Источником какого вида вибрации являются тракторы сельскохозяйственные. Защита от повышенного уровня вибрации. Основные методы и средства защиты от вибрации

Источником какого вида вибрации являются тракторы сельскохозяйственные. Защита от повышенного уровня вибрации. Основные методы и средства защиты от вибрации

Лекция 10

Проблема защиты от вибрации возникла в связи с бурным развитием механизации и автоматизации производственных процессов, увеличением скоростей на стационарных и транспортных установках, широким внедрением пневматического и электрифицированного инструмента, а так же оборудования робототехники.

Вибрация – механические колебания с частотой свыше 1 Гц, возникающие в упругих телах или телах находящихся под воздействием переменного физического поля. Эти колебания могут передаваться по материальной среде на тело человека.

Основные параметры вибрации. Основными параметрами, характеризующими вибрацию, являются частота колебаний f [Гц], амплитуда смещения А [м, см], колебательная скорость V [м/с], ускорение колебаний а [м/с 2 ], временной период колебаний Т [с].

Простейшим видом вибрации является гармоническое колебание. Она характеризуется амплитудой и частотой, из которых выводят скорость и ускорение. Виброускорение , или виброперегрузка, - это максимальное изменение скорости колебаний в единицу времени, обычно выражается в см/с 2 . В практике авиационной и космической медицины чаще применяют единицы ускорения, кратные ускорению свободного падения q. Частота вибрации - число колебаний в единицу времени, измеряется в герцах. Важным параметром вибрации является ее интенсивность, или амплитуда . Если вибрация представляет собой простое синусоидальное колебание около неподвижной точки, то ее амплитуда определяется как максимальное отклонение от этой позиции (измеряется в миллиметрах).

Классификация.

1. По способу передачи на человека различают:

- общую вибрацию, передающуюся через опорные поверхности на тело сидящего или стоящего человека; им подвергаются работники поездных и локомотивных бригад, операторы путевых и самоходных машин, трактористы и другие рабочие, а также пассажиры.

- локальную вибрацию, передающуюся через руки человека. Эти вибрации создаются многочисленными ручными инструментами, широко применяемыми при самых разнообразных работах. Вибрация, передающаяся на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, относится к локальной вибрации.

2. По источнику возникновения вибраций различают:

- локальную от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием;

- локальную вибрацию, передающуюся человеку от ручного немеханизированного инструмента (без двигателей), например, рихтовочных молотков разных моделей и обрабатываемых деталей;

Общую вибрацию 1 категории - транспортную вибрацию, воздействующую на человека на рабочих местах самоходных и прицепных машин, транспортных средств при движении по местности и дорогам (в том числе при их строительстве). К источникам транспортной вибрации относят: тракторы сельскохозяйственные и промышленные, самоходные сельскохозяйственные машины (в том числе комбайны); автомобили грузовые (в том числе тягачи, скреперы, грейдеры, катки и т.д.); снегоочистители, самоходный горно-шахтный рельсовый транспорт;



Общую вибрацию 2 категории - транспортно-технологическую вибрацию, воздействующую на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок. К источникам транспортно-технологической вибрации относят: экскаваторы (в том числе роторные), краны промышленные и строительные, машины для загрузки (завалочные) мартеновских печей в металлургическом производстве; горные комбайны, шахтные погрузочные машины, самоходные бурильные каретки; путевые машины, бетоноукладчики, напольный производственный транспорт;

Общую вибрацию 3 категории - технологическую вибрацию, воздействующую на человека на рабочих местах стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации. К источникам технологической вибрации относят: станки металло- и деревообрабатывающие, кузнечно-прессовое оборудование, литейные машины, электрические машины, стационарные электрические установки, насосные агрегаты и вентиляторы, оборудование для бурения скважин, буровые станки, машины для животноводства, очистки и сортировки зерна (в том числе сушилки), оборудование промышленности стройматериалов (кроме бетоноукладчиков), установки химической и нефтехимической промышленности и др.

(По месту действия технологическую вибрацию подразделяют на следующие типы:

а) на постоянных рабочих местах производственных помещений предприятий;

б) на рабочих местах на складах, в столовых, бытовых, дежурных и других производственных помещений, где нет машин, генерирующих вибрацию;

в) на рабочих местах в помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, здравпунктов, конторских помещениях, рабочих комнатах и других помещениях для работников умственного труда.)

- общую от внешних источников: городского рельсового транспорта (мелкого залегания и открытые линии метрополитена, трамвай, железнодорожный транспорт) и автотранспорта; промышленных предприятий и передвижных промышленных установок (при эксплуатации гидравлических и механических прессов, строгальных, вырубленных и других металлообрабатывающих механизмов, поршневых компрессоров, бетономешалок, дробилок, строительных машин и др.);

- общую вибрацию в жилых помещениях и общественных зданиях от внутренних источников: инженерно-технического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, насосные, пылесосы, холодильники, стиральные машины и т.п.), а также встроенных предприятий торговли (холодильное оборудование), предприятий коммунально-бытового обслуживания, котельных и т.д.

3. По направлению действия вибрацию подразделяют в соответствии с направлением осей ортогональной системы координат:

Локальную вибрацию подразделяют на действующую вдоль осей ортогональной системы координат X л, Y л, Z л, где ось X л параллельна оси места охвата источника вибрации (рукоятки, ложемента, рулевого колеса, рычага управления, удерживаемого в руках обрабатываемого изделия и т.п.), ось Y л перпендикулярна ладони, а ось Z л лежит в плоскости, образованной осью X л и направлением подачи или приложения силы (или осью предплечья, когда сила не прикладывается);

Общую вибрацию подразделяют на действующую вдоль осей ортогональной системы координат X o , Y o , Z o , где X o (от спины к груди) и Y o (от правого плеча к левому) - горизонтальные оси, направленные параллельно опорным поверхностям; Z o - вертикальная ось, перпендикулярная опорным поверхностям тела в местах его контакта с сиденьем, полом и т.п.

4. По характеру спектра вибрации выделяют:

- узкополосные вибрации, у которых контролируемые параметры в одной 1/3 октавной полосе частот более чем на 15 дБ превышают значения в соседних 1/3 октавных полосах;

- широкополосные вибрации - с непрерывным спектром шириной более одной октавы.

5. По частотному составу вибрации выделяют:

- низкочастотные вибрации (с преобладанием максимальных уровней в октавных полосах частот 1-4 Гц для общих вибраций, 8-16 Гц - для локальных вибраций);

- среднечастотные вибрации (8-16 Гц - для общих вибраций, 31,5-63 Гц - для локальных вибраций);

- высокочастотные вибрации (31,5-63 Гц - для общих вибраций, 125-1000 Гц - для локальных вибраций).

6. По временным характеристикам вибрации выделяют:

- постоянные вибрации, для которых величина нормируемых параметров изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения;

- непостоянные вибрации, для которых величина нормируемых параметров изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с, в том числе:

а) колеблющиеся во времени вибрации, для которых величина нормируемых параметров непрерывно изменяется во времени;

б) прерывистые вибрации, когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с;

в) импульсные вибрации, состоящие из одного или нескольких вибрационных воздействий (например, ударов) каждый длительностью менее 1 с.

Источники. Основными источниками вибрации являются:

* неуравновешенные вращающиеся массы (вращающиеся роторы тепловых и электрических машин, агрегаты станков и т.п.);

* возвратно-поступательные узлы и механизмы (поршни, кривошипные узлы, ползуны тепловых машин, соленоиды электромагнитных устройств и т.п.);

* ударные механизмы (зубчатые передачи, муфты сцепления (кулачковые, пальцевые), подшипники скольжения из-за наличия в них технологических зазоров и т.п.).

Нормирование. Для предотвращения заболевания вибрационной болезнью, вибрация ручного механизма не должна превышать величин, установленных в ГОСТ 17 770-72 "Машины ручные. Допустимые уровни вибраций ". Требования по ограничению параметров вибраций до допустимых величин должны содержаться во всех стандартах и технических условиях на виброопасное оборудование и средства транспорта (ГОСТ 12.1.012-78).Спектром вибраций называют зависимость уровней в децибелах колебательной скорости (или колебательного ускорения) в октавных полосах частот от средних частот этих полос.

Октавные полосы частот стандартизированы международным соглашением. Нормируемый диапазон частот устанавливается:

Для локальной вибрации в виде октавных полос со среднегеометрическими частотами: 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц;

Для общей вибрации в виде октавных или 1/3 октавных полосах со среднегеометрическими частотами 0,8; 1; 1,25; 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0; 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 50,0; 63,0; 80,0 Гц.

При измерениях определяют уровни в тех или иных полосах частот. Пределы измерений по частоте устанавливают исходя из гигиенических норм или условий задачи.

При гармонических колебаниях скорость и ускорение могут быть вычислены по формуле и в конечном виде их максимальные значения соответственно равны

Учитывая, что абсолютные значения параметров, характеризующих вибрацию, изменяются в широких пределах, на практике используют логарифмические уровни виброскорости и виброускорения:

где V – виброскорость в октавной полосе, м/с;

V 0 - пороговое значение виброскорости, равное 5·10 -8 м/с, соответствующее пороговому значению звукового давления на частоте 1000 Гц, равному 2·10 -5 Па;

а – среднее квадратичное значение отклонения виброускорения, м/с 2 ;

а 0 – пороговое значение виброускорения, равное 1·10 -6 м/с 2 .

Влияние вибраций на организм человека. Вибрация при воздействии на человека является фактором высокой биологической активности.

Вибрация при длительном воздействии на организм человека не только создает дискомфорт и снижает производительность труда, но и при определенных параметрах может привести к вибрационному заболеванию. Вибрационная болезнь - это общее заболевание всего организма, при котором нарушается деятельность различных органов и функциональных систем. При воздействии локальных вибраций в основном поражаются кровеносные сосуды и нервные окончания рук. Длительное воздействие интенсивной общей вибрации вредно влияет преимущественно на центральную и вегетативную нервную системы.

Вибрация может передаваться человеку непосредственно при прикосновении к вибрирующим предметам и через промежуточные среды достаточной плотности (жидкость, твердые тела). Она может воздействовать на человека непосредственно через опорные поверхности и через некоторые вторичные контактные предметы. Опосредованные воздействия вибрации проявляются в вибрации приборов и их стрелок, что затрудняет считывание показаний.

По мере удаления от места приложения вибрации интенсивность ее обычно ослабевает. Однако при воздействии вибрации некоторых частот ин­тенсивность ее может возрастать на определенных участках тела вслед­ствие резонансных явлений, обусловленных наличием определенной соб­ственной частоты колебаний разных частей тела. Например, колебания головы человека, стоящего на виброплатформе, значительно возрастают на частотах от 4 до 8 гц и в диапазоне частот 20-30 гц.

Характер изменений, возникающих под влиянием вибрации, пере­дающейся на руки, находится в зависимости от спектрального состава ее. Преобладание высокочастотных составляющих в спектре обуслов­ливает в качестве специфического раздражителя, развитие сосудистых нарушений, а также местных расстройств кожной чувствительности при незначительных изменениях мышечной системы. Наличие в спектре преимущественно низких частот в связи с микротравматизацией пери­ферической нервной системы вызывает трофические нарушения и, кроме костно-суставной патологии, приводит, как правило, к изменениям в мышцах при отсутствии или слабой выраженности сосудистых нару­шений.

Человек может воспринимать вибрацию любым участком тела с помощью специальных виброрецепторов. Наиболее высокой вибраци­онной чувствительностью, определяемой с помощью специаль­ного прибора (паллестезиометра), обладает кожа ладонной поверхности концевых фаланг пальцев рук. Наибольшая чувствительность наблю­дается к вибрации с частотами 100-250 Гц, причем в дневное время чувствительность выражена в большей степени, чем утром и вечером. При воздействии вибрации преимущественно высокочастотного характе­ра наблюдается снижение вибрационной чувствительности, особенно на частоте вибрационного раздражителя.

Под влиянием вибрации может существенно изменяться и боле­вая чувствительность, которую измеряют с помощью альгезиметра.

Воздействие вибрации может приводить к уменьшению и других ви­дов кожной чувствительности - дискриминационной, тактильной, терми­ческой.

Следует отметить, что изменение вибрационной и тактильной чув­ствительности пальцев рук может наблюдаться не только под влиянием вибрации ручных инструментов, но и при воздействии вибрации рабо­чего места.

Одним из характерных признаков вибрационной болезни, возникаю­щей под влиянием высокочастотной вибрации, передаваемой на руки, является изменение тонуса капилляров кожи. При этом возможны спазм или атония капилляров, а также оба этих состояния одновременно на разных участках капилляров.

О склонности капилляров к спазму судят по резкому побледнению кожи пальцев под влиянием 2 - З-минутного контакта с холодной водой или куском льда. Об этом же может свидетельствовать и сохранение более 10 секунд бледности кожного покрова кисти на участке, подвер­гавшемся давлению в течение 5 секунд (симптом «белого пятна»). Покраснение или цианоз кистей опущенных рук говорит о склон­ности капилляров к атонии. Иногда удается регистрировать понижение капиллярного давления в пальцах рук. Наблюдается снижение перифе­рического сопротивления, часто устанавливают гипотонию, реже - ги­пертонию. Иногда в начальной стадии вибрационной болезни отмечается гипотония, сменяющаяся в выраженных случаях гипертонией. В связи с сосудистыми нарушениями нередко наблюдается гипотермия кожи.

Секреторные нарушения обычно выражаются в усиленной потливости, реже в сухости кожи ладоней.

Нарушение трофики, возникающее преимущественно при воздействии низкочастотной вибрации, раньше всего проявляется в стер­тости кожного рисунка, утолщении и деформации ногтей, а иногда, на­оборот, в истончении и уплощении их. Пальцы становятся малоподвиж­ными, деформируются, ногтевые фаланги могут утолщаться, придавая пальцам вид «барабанных палочек».

В некоторых случаях вследствие поражения периферических дви­гательных волокон развивается атрофия мелких мышц кистей и пле­чевого пояса, уменьшается мышечная сила. При работе с инструментами, генерирующими вибрации с превалированием низкочастотных составляющих в спектре, часто возникают изменения костно-суставного аппарата. В развитии этих пораже­ний большое значение имеет величина от­дачи инструмента - возвратного удара и противодействующего ему мышечного статического напряжения.

При воздействии вибрации эластич­ность суставных хрящей уменьшается вследствие длительного функционально­го перенапряжения их; вследствие этого суставы оказываются в меньшей степени защищенными от механического воздей­ствия. В луче-запястном суставе и мелких суставах запя­стья развиваются явления деформирую­щего остеоартроза. При этом движения пальцев затруднены, контуры суставов сглажены. Возможно также по­ражение локтевого, плечевого и грудино-ключичных суставов, а также позвоноч­ника (чаще в грудном отделе) в виде остеопороза и деформирующего спондилеза.

Структурным нарушениям в костях предшествуют изменения минерального и ферментативного обмена.

Чаще всего поражаются суставы с правой стороны в связи с боль­шей нагрузкой, приходящейся обычно на правую руку, однако возмож­ны двусторонние поражения, особенно локтевого сустава. Иногда встре­чаются осложнения в виде компрессионного перелома при асептиче­ском некрозе полулунной кости.

Некоторые изменения носят характер «профессиональных стигм», не оказывая влияния на функцию руки.

Выраженность костно-суставных поражений в значительной мере зависит от стажа работы с виброинструментами и интенсивности воздействующей вибрации.

Условиями, способствующими развитию вибрационной патологии, являются охлаждение и шум. Длительный контакт с холодными метал­лическими частями различных инструментов, особенно охлажденными деталями пневмоинструментов из-за адиабатического расширения сжа­того воздуха, охлаждающее действие струи отработанного воздуха на руки способствуют развитию спазма сосудов.

Большая выраженность вибрационной патологии наблюдается при одновременном с вибрацией воздействии шума, также оказывающего неблагоприятное влияние на центральную нервную и ряд других систем организма.

По клиническому течению различают начальную форму, средней тяжести и тяжелые формы вибрационной болезни, возникаю­щей при воздействии вибрации на руки. Начальная форма характе­ризуется преимущественно субъективными явлениями (боль, парестезия), сопровождающимися не резко выраженными сосудистыми наруше­ниями (гипотермия, умеренный акроцианоз, слабо положительная холодовая проба, симптом «белого пятна») и изменениями кожной чув­ствительности (гипоальгезия, повышение вибрационной чувствительно­сти, сменяющееся ее понижением). Возможны небольшие трофических изменения мышц плечевого пояса.

При форме средней тяжести боли усиливаются, нарушения кож­ной чувствительности стойкие, четко выраженные, наблюдаются на всех пальцах и даже предплечье. Сосудистые изменения наряду с общей тенденцией к спастическому состоянию проявляются в виде приступов спазма с побледнением пальцев («мертвые пальцы») и последующей синюшностью их вследствие пареза капилляров. Резко снижается тем­пература кожи кистей, наблюдается гипергидроз. Снижается мышечная сила, развиваются костно-суставные поражения. Отмечаются общие яв­ления в виде функционального расстройства центральной нервной систе­мы астенического и астено-невротического характера.

Тяжелые формы вибрационной болезни имеют несколько видов. При сирингомиелоподобной форме нарушения кожной чувствительности распространяются на область плечевого пояса, а иногда и грудной клетки. Они могут иметь диссоциированный характер (относительное сохранение одних видов чувствительности при нарушении других) и сопровождаться атрофией мышц не только кистей, но и плечевого пояса.

Амиотрофическая форма, кроме типичных нарушений чувствитель­ности, характеризуется постепенно прогрессирующей мышечной атро­фией рук, а иногда ног и плечевого пояса, развитием парезов. Эти фор­мы легко отличить от сходных заболеваний по отсутствию пирамидных симптомов.

К тяжелым случаям относят и выраженные церебро-сосудистые кри­зы, расстройства коронарного кровообращения вследствие генерализа­ции сосудистых нарушений.

При наличии начальной стадии вибрационной болезни у квалифици­рованных рабочих наряду с лечением рекомендуется перевод их на 2 ме­сяца на работу, не связанную с воздействием вибрации и охлаждения. Все изменения легко обратимы. При средней тяжести вибрационной болезни после лечения также необходимо временное отстранение их от работы, связанной с вибрацией и охлаждением. В случае малоэффективности этих мероприятий целесообразна перемена профессии с предоставле­нием профессиональной инвалидности на период переквалификации. Тяжелые формы вибрационной болезни, резко ограничивающие трудо­способность, всегда являются показанием к переводу работающих на профессиональную инвалидность.

Клиническая картина заболевания, вызванная воздействи­ем вибрации рабочего места, в значительной мере зависит от преобладания высоко- или низкочастотных составляющих в спектре ее.

Под влиянием вибрации рабочего места с преобладанием высоких частот в спектре вначале наблюдаются умеренно выраженные измене­ния периферических нервов и сосудов на ногах - нарушение чувстви­тельности в стопах и голенях, тенденция к спазму капилляров пальцев стоп с понижением температуры кожи, цианоз, ослабление пульсации периферических сосудов, боли в ногах без четкой локализации или в икроножных мышцах, особенно при давлении, быстро развивающаяся усталость во время ходьбы. Кроме того, наблюдается легкое кратковременное головокружение, быстрая утомляемость, периодически возникающая общая слабость, шум и чувство тяжести в голове.

При более выраженной форме заболевания превалируют симптомы, свидетельствующие о нарушении функции центральной нервной систе­мы: приступы головокружения, и стойкая головная боль, тремор паль­цев рук, выраженная общая слабость. Возникает чувство неперено­симости вибрации и вегетативная лабильность. Иногда наблюдается развитие поражений центральной нервной системы органического характера.

При воздействии вибрации рабочего места, характерной для транспортных средств с превалированием низких частот в спектре, наиболее характерны ишио-радикулиты как результат раздражения и сдавливания пояснично-крестцовых корешков вследствие травматизации костно-хрящевого и связочного аппарата позвоночника, что нередко обнару­живается рентгенографически. Возможно растяжение связок, на кото­рых упруго подвешены внутренние органы, например желудок и женские половые органы.

В результате интенсивных колебаний желудка нарушается процесс переваривания пищи, наблюдается раздражение слизистой оболочки желудка и создаются условия для возникновения гастрита. Развитие гастрита связывают также с нарушением функции вегетативной нервной системы под влиянием вибрации с высокочастотными составляю­щими спектра. Иногда наблюдают признаки раздражения нервного «солнечного» сплетения - солярит с приступами острой боли в подло­жечной области.

Возможны также расстройства функции вестибулярного анализа­тора, являющегося специализированным рецептором, воспринимающим колебания преимущественно низких частот и регулирующим положение тела в пространстве. В связи с этим наблюдается нарушение устойчивости равновесия при вертикальном положении тела.

Основными методами борьбы с вибрациями машин и оборудования являются:

1) снижение вибраций воздействием на источник возбуждения (посредством снижения вынуждающих сил);

При конструировании машин и проектировании технологических процессов предпочтение должно отдаваться таким кинематическим и технологическим схемам, при которых динамические процессы, вызванные ударами, резкими ускорениями были бы исключены или предельно снижены. К значительному снижению вибрации приводит замена ковки, штамповки – прессованием; ударной правки – вальцовкой; пневматической клепки и чеканки – гидравлической клепкой и сваркой.

Большое значение имеет выбор рабочих режимов. Например, при увеличении частоты вращения турбины резко возрастает уровень виброскорости на опорах ее подшипникового узла.

Причиной низкочастотных вибраций насосов, компрессоров, двигателей является неуравновешенность вращающихся элементов. Действие неуравновешенных динамических сил усугубляется плохим креплением деталей, их износом в процессе эксплуатации. Устранение неуравновешенности вращающихся масс достигается балансировкой.

2) отстройка от режима резонанса путем рационального выбора массы или жесткости колеблющейся системы;

Для ослабления вибраций существенное значение имеет наложение резонансных режимов работы, т.е. отстройка собственных частот агрегата и его отдельных узлов и деталей от частоты вынуждающей силы. Резонансные режимы при работе технологического оборудования устраняют двумя путями : либо изменением характеристик системы (массы или частоты), либо установлением нового рабочего режима (отстройка от резонансного значения угловой частоты вынуждающей силы). Второй метод осуществляют на стадии проектирования, т.к. в условиях эксплуатации режимы работы определяются условиями технологического процесса.

3) вибродемпфирование – увеличение механического импеданса колеблющихся конструктивных элементов путем увеличения диссипативных сил при колебаниях с частотами, близкими к резонансным;

Установка на защищаемый объект защитного устройства – упругодемпфирующего элемента, состоящего из элемента упругости и элемента демпфирования, соединенных параллельно. В этом случае, при действии внешняя вынуждающая сила действует и на защищаемый объект, и на упругий элемент защитного устройства, а реакция последнего полностью или частично гасится демпфирующим элементом защитного устройства.

4) динамическое виброгашение – присоединение к защищаемому объекту систем, реакции которых уменьшают размах вибраций объекта в точках присоединения систем;

Чаще всего динамическое виброгашение осуществляют путем установки агрегатов на фундаменты. Массу фундамента выбирают таким образом, чтобы амплитуда колебаний подошвы фундамента в любом случае не превышала 0,1 – 0,2 мм, а для особоответственных сооружений – 0,005 мм. Для небольших объектов между основанием и агрегатом устанавливают массивную опорную плиту.

В машиностроении наибольшее распространение получили динамические виброгасители, уменьшающие уровень вибрации за счет воздействия на объект защиты реакций виброгасителя. Виброгаситель жестко крепится на вибрирующем агрегате, поэтому в каждый момент времени в нем возбуждаются колебания находящиеся в противофазе с колебаниями агрегата.

5) вибропоглощение – снижение вибрации путем усиления в конструкции процессов внутреннего трения, рассеивающих виброэнергию в результате необратимого преобразования ее в теплоту;

Это процесс уменьшения уровня вибраций защищаемого объекта путем превращения энергии механических колебаний данной системы в тепловую энергию.

Увеличение тепловых потерь в системе может производиться двумя путями:

1) использованием в качестве конструкционных материалов с большим внутренним трением;

2) нанесением на вибрирующие поверхности слоя упруго-вязких материалов, обладающих большими потерями на внутреннее трение.

Значение параметра - коэффициента потерь, характеризующего диссипативные силы в колебательной системе – для основных конструкционных материалов (чугунов и сталей) составляет 0,001 – 0,01.

Значительно большее внутреннее трение имеют сплавы на основе систем никеля: медь – никель, титан – никель, кобальт – никель. этих сплавов составляет 0,02 – 0,1.

С точки зрения вибраций наиболее предпочтительным является использование в качестве конструкционных материалов пластмасс, дерева, резины.

Когда применение полимерных материалов в качестве конструкционных не представляется возможным, для снижения вибраций используют вибропоглощающие покрытия. Действие покрытий основано на ослаблении вибраций путем перевода колебательной энергии в тепловую при деформации покрытий.

В зависимости от значения динамического модуля упругости (Е ) покрытия подразделяются на жесткие (Е =10 8 – 10 9 Па) и мягкие (Е £10 7 Па). Действие покрытий первой группы проявляется на низких и средних частотах, второй – на высоких.

Покрытия из слоя вязкоупругого материала (твердой пластмассы, рубероида, изола) и слоя фольги увеличивает жесткость покрытия. составляет 0,15 – 0,4.

Мягкие покрытия – мягкие пластмассы, материалы типа резины (пеноэласт, технический винипор), пенопласт, поливинилхлоридные пластики. этих покрытий – 0,05 – 0,5.

Если не представляется возможным обеспечить качественное соединение покрытий с обрабатываемой поверхностью, если последняя имеет сложную конфигурацию, то используют мастичные покрытия. Наибольшее распространение получили мастики типа «Антивибрит» на основе эпоксидных смол. мастик составляет 0,3 – 0,45. Используют мастики в машиностроении для снижения вибрации и шума вентиляционных систем, компрессоров, насосов, трубопроводов.

Хорошо поглощают колебания смазочные материалы.

6) виброизоляция – установка между источником вибрации и объектом защиты упругодемпфирующего устройства – виброизолятора – с малым коэффициентом передачи.

Этот способ защиты заключается в уменьшении передачи колебаний от источника возбуждения защищаемому объекту при помощи устройств, помещенных между ними. Примером виброизоляции является установка гибких вставок в коммуникациях воздуховодов, применение упругих прокладок в узлах крепления воздуховодов, разделение гибкой связью перекрытий несущих конструкций.

Вибрация (лат. Vibratio - колебание, дрожание) - механические колебания. Вибрация - колебание твердых тел.

О вибрации также говорят в более узком смысле, подразумевая механические колебания, оказывающее ощутимое влияние на человека. В этом случае подразумевается частотный диапазон 1,6-1000 Гц. Понятие вибрация тесно связано с понятиями шум, инфразвук, звук.

Источники возникновения – работающие электродвигатели, особенно плохо балансированные, работающее дерево-, и металлообрабатывающее оборудование, газотурбинные двигатели транспортных средств, дизельные двигатели, двигатели внутреннего сгорания и трансмиссия, плохое состояние дорожного покрытия, ручной электроинструмент - дрели, отбойные молотки и др.

Воздействие фактора на организм человека

При действии на организм общей вибрации страдает в первую очередь нервная система и анализаторы: вестибулярный, зрительный, тактильный. Для водителей машин, машинистов, подвергающихся воздействию низкочастотной и толчкообразной вибраций, характерны изменения в пояснично-крестцовом отделе позвоночника. Рабочие часто жалуются на боли в пояснице, конечностях, в области желудка, на отсутствие аппетита, бессонницу, раздражительность, быструю утомляемость. В целом картина воздействия общей низко- и среднечастотной вибраций выражается общими вегетативными расстройствами с периферическими нарушениями, преимущественно в конечностях, снижением сосудистого тонуса и чувствительности Локальная вибрация вызывает спазмы сосудов кисти, предплечий, нарушая снабжение конечностей кровью. Одновременно колебания действуют на нервные окончания, мышечные и костные ткани, вызывают снижение кожной чувствительности, отложение солей в суставах пальцев, деформируя и уменьшая подвижность суставов. Колебания низких частот вызывают резкое снижение тонуса капилляров, а высоких частот – спазм сосудов.

Классификация фактора

Вибрация классифицируется в зависимости:

От временных характеристик представлена в таблице 1.

Способ классификации Вид вибрации Характеристика вибрации
По временным характеристикам Постоянные Для которых величина нормируемых параметров изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения
Непостоянные, в том числе Для которых величина нормируемых параметров изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с, в том числе
Колеблющиеся во времени Для которых величина нормируемых параметров непрерывно изменяется во времени
Прерывистые Когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с
Импульсные Состоящие из одного или нескольких вибрационных воздействий (например, ударов), каждый длительностью менее 1 с

От способа передачи представлена в таблице 2.

От источника возникновения представлена в таблице 3 (см. ниже).

Способ классификации Вид вибрации Описание
По источнику возникновения Локальная вибрация Передающаяся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием
Передающаяся человеку от ручного немеханизированного инструмента (без двигателей), например, рихтовочных молотков разных моделей и обрабатываемых деталей
Общая вибрация 1 категории – транспортная вибрация. Воздействует на человека на рабочих местах самоходных и прицепных машин, транспортных средств. К источникам транспортной вибрации относят: тракторы, самоходные машины, автомобили грузовые (в том числе тягачи, скреперы, грейдеры, катки и т.д.); снегоочистители, самоходный горно-шахтный рельсовый транспорт
2 категории – транспортно-технологическая вибрация. Воздействует на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, К источникам транспортно-технологической вибрации относят: экскаваторы (в том числе роторные), краны промышленные и строительные, машины для загрузки, самоходные бурильные каретки; путевые машины, бетоноукладчики, напольный производственный транспорт
3 категории – технологическая вибрация. Воздействует на человека на рабочих местах стационарных машин или передается на рабочие места, не имеющие источников вибрации. К источникам технологической вибрации относят: станки металло- и деревообрабатывающие, кузнечно-прессовое оборудование, литейные машины, электрические машины, стационарные электрические установки, насосные агрегаты и вентиляторы и др.

От направления действия

По направлению действия общую вибрацию подразделяют на вертикальную, распространяющуюся по оси Z, перпендикулярной к опорной поверхности; горизонтальную, распространяющуюся по оси X от спины к груди; горизонтальную, распространяющуюся по оси Y от правого плеча к левому (рисунок 1).

Локальную вибрацию подразделяют на действующую вдоль оси Xл параллельно оси места охвата источника вибрации, вдоль оси Yл перпендикулярно ладони и вдоль оси Zл (действует в плоскости, образованной осью Xл и направлением подачи или приложения силы) (рисунок 2).

Рисунок 1

Рисунок 2

От характера спектра представлена в таблице 4 (см. ниже).

От частотного состава представлена в таблице 5 (см.ниже).

Нормируемые показатели

постоянная вибрация (общая, локальная) измеряют или рассчитывают корректированный уровень (значение) виброускорения.

Для оценки условий труда по фактору непостоянная вибрация (общая, локальная) измеряют или рассчитывают эквивалентный корректированный уровень (значение) виброускорения.

При воздействии на работника в течение рабочего дня (смены) как постоянной , так и непостоянной вибрации (общей, локальной) для оценки условий труда измеряют или рассчитывают с учетом продолжительности их действия эквивалентный корректированный уровень (значение) виброускорения.

При воздействии на работника локальной вибрации в сочетании с местным охлаждением рук (работа в условиях охлаждающего микроклимата класса 3.2) класс вредности условий труда для данного фактора повышают на одну ступень.

Нормируемый диапазон частот :

– для общей вибрации в виде октавных полос со среднегеометрическими частотами: 2; 4; 8; 16; 31,5; 63 Гц или в виде третьоктавных полос со среднегеометрическими частотами: 0,8; 1; 1,25; 1,6; 2; 2,5; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80 Гц;

– для локальной вибрации в виде октавных полос со среднегеометрическими частотами 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц.

Нормативы

Предельно допустимые величины нормируемых параметров производственной локальной вибрации при длительности вибрационного воздействия 480 мин (8 ч) приведены в таблице 6.

Таблица 6. Предельно допустимые величины нормируемых параметров производственной локальной вибрации

вибрации категории 1 – транспортной для рабочих мест приведены в таблице 7.

Таблица 7. категории 1 – транспортной

Предельно допустимые значения вибрации категории 2 – транспортно-технологической для рабочих мест приведены в таблице 8.

Таблица 8. Предельно допустимые значения вибрации категории 2 – транспортно-технологической

Предельно допустимые значения вибрации категории 3 – технологической типа «а» для рабочих мест представлены в таблице 9.

Таблица 9. Предельно допустимые значения вибрации категории 3 – технологической типа «а»

Предельно допустимые значения вибрации категории 3 – технологической типа «б» рабочих мест представлены в таблице 10.

Таблица 10. Предельно допустимые значения вибрации категории 3 – технологической типа «б»

Предельно допустимые значения вибрации категории 3 – технологической типа «в» рабочих мест представлены в таблице 11.

Таблица 11. Предельно допустимые значения вибрации категории 3 – технологической типа «в»

Допустимые значения вибрации в жилых помещениях, палатах больниц и санаториев представлены в таблице 12.

Таблица 12. Допустимые значения вибрации в жилых помещениях, палатах больниц, санаториев

Допустимые значения вибрации в административно-управленческих помещениях и в помещениях общественных зданий представлены в таблице 13.

Таблица 13. Допустимые значения вибрации в административно-управленческих помещениях и в помещениях общественных зданий

Классы условий труда в зависимости от уровней вибрации на рабочем месте представлены в таблице 14.

Наименование фактора, показатель, единица измерения 2 (допустимый) 3.1 3.2 3.3 3.4 4(опасный)
Вибрация локальная, эквивалентный корректированный уровень (значение) виброскорости, виброускорения (дБ/раз) <=ПДУ превышение до 3дБ/1,4 раз включительно превышение до 9дБ/2,8 раз включительно >12дБ/4раза
Вибрация общая, эквивалентный корректированный уровень виброскорости, виброускорения (дБ/раз) <=ПДУ превышение до 6дБ/2 раз включительно превышение до 12дБ/4 раза включительно превышение до 18дБ/6 раз включительно превышение до 24дБ/8 раз включительно >24дБ/8раза

Таблица 14. Классы условий труда в зависимости от уровней вибрации на рабочем месте

Методика проведения измерений

Для оценки вибрационной экспозиции за смену помимо информации об уровне вибрации необходима также оценка длительности воздействия вибрации в течение рабочего дня. Минимально допустимая длительность измерений зависит от типа вибрационного сигнала, средств измерений и выполняемой рабочим операции. Общее время измерения, представляющее собой сумму отдельных измерений, должно быть не менее 1 мин. Предпочтительно вместо одного большого периода измерений брать несколько (не менее трех для каждой операции) более коротких. Иногда получение надежных измерений во время обычного выполнения рабочей операции затруднительно или невозможно, поскольку сточки зрения процедуры измерения длительность действия вибрации может быть слишком коротка. В этом случае допускается проведение измерений в процессе имитации рабочей операции, когда периоды действия вибрации искусственно удлиняют, но рабочие условия при этом поддерживают максимально близкими к тем, что имеют место при обычном выполнении рабочей операции.

Средства измерений

На рисунке 3 представлены средства проведения измерений уровней вибрации.

Рисунок 3 – Средства проведения измерений уровней вибрации

Мероприятия по устранению вредного воздействия вибрации

Имеются две основные группы методов снижения вибрации оборудования в производственных зданиях и помещениях – в источнике ее возникновения и на пути распространения. Необходимо правильно сочетать эти средства.

Снижение вибрации в источнике ее возникновения . При проектировании зданий снижение вибрации в источнике обеспечивают применением малошумного оборудования и выбором правильного (расчетного) режима его работы; при строительстве и эксплуатации зданий – технической исправностью оборудования.

Снижение вибрации на пути ее распространения (виброизоляция оборудования, виброизоляция воздуховодов, виброизолирующие площадки, коврики, сиденья) достигается комплексом архитектурно-планировочных и акустических мероприятий.

  1. Архитектурно-планировочные мероприятия предусматривают такую планировку помещений в зданиях, при которой источники вибрации максимально удалены от защищаемых объектов. Снижение вибрации в защищаемых помещениях может быть достигнуто целесообразным размещением оборудования в здании. Оборудование, создающее значительные динамические нагрузки, рекомендуется устанавливать в подвальных этажах или на отдельных фундаментах, не связанных с каркасом здания. При установке оборудования на перекрытия желательно размещать его в местах, наиболее удаленных от защищаемых объектов.
  2. Акустические мероприятия. К ним относится виброизоляция инженерного оборудования. Схемы жесткого и виброизолированного крепления агрегата (машины) к фундаменту. Для виброизоляции агрегата (машины) необходимо его устанавливать на виброизоляторы и изолировать подходящие к нему коммуникации. Применяют однозвенную, двухзвенную, а иногда и трехзвенную схему виброизоляции, когда между агрегатом и виброизоляторами располагают массивную плиту (обычно железобетонную) или жесткую опорную раму массой m. Поддерживающую конструкцию, на которую опирается виброизолированная машина, называют фундаментом. Это может быть плита перекрытия, железобетонный блок, балки и т.д.

Виброизолирующие элементы могут быть представлены:

а) в виде отдельных опор:

− пружинные виброизоляторы, основным рабочим элементом которых являются одна или несколько стальных винтовых пружин;

− упругие прокладки, нередко имеющие сложную форму;

б) в виде слоя упругого материала, укладываемого между машиной и фундаментом;

в) в виде плавающего пола на упругом основании. Пол на упругом основании представляет собой железобетонную стяжку, устроенную на упругом основании поверх несущей плиты перекрытия здания. Обычно применяется в двухзвенной схеме с другими виброизоляторами.

Проектирование виброизолирующих конструкций сводится к выбору конструктивной схемы виброизоляции, подбору типа и параметров виброизоляторов по известной номенклатуре (реже их рассчитывают и проектируют), выбору конструкции пола на упругом основании (если он требуется), расчету эффективности принятой конструкции (виброизоляции).

Все рассмотренные виброизолирующие конструкции снижают передаваемую на фундамент вибрацию только на частотах, превышающих основную частоту собственных вертикальных колебаний f0 (резонансную частоту) системы, состоящей из машины (М), установленной на виброизолирующем основании.

Расчет виброизолирующих конструкций состоит в выборе и расчете виброизоляторов и других элементов, из которых они состоят, а также в расчете виброизоляции.

При виброизоляции агрегатов (машин) с рабочими частотами менее 18…20 Гц следует применять пружинные виброизоляторы. Пружинные виброизоляторы, обладая меньшей частотой f0, обеспечивают большую виброизоляцию на низких частотах, чем другие виды виброизоляторов из эластичных материалов. Однако последние на средних и высоких частотах более эффективны, поскольку волновые резонансные явления, ухудшающие виброизоляцию, в них наступают на более высоких частотах, чем в пружинах и, кроме того, менее выражены из-за существенно больших внутренних потерь энергии.

Из-за указанных явлений виброизоляция пружинами на средних и высоких частотах падает и весьма невелика. Некоторое увеличение ее достигается при установке рези-новых прокладок между пружинами и фундаментом. На больших частотах дополнительная виброизоляция растет с частотой и становится тем выше, чем больше коэффициент потерь, толщина и коэффициент формы прокладки. Поэтому их следует изготовлять из перфорированной, а не сплошной резины. Необходимо отметить, что тонкие резиновые прокладки не устраняют основного недостатка пружинных виброизоляторов – низкую виброизоляцию на средних и высоких частотах. Плавающие полы без специальных виброизоляторов можно использовать только с оборудованием, имеющим рабочие частоты более 45…50 Гц. Это, как правило, небольшие машины, виброизоляция которых может быть обеспечена и другими способами. Эффективность полов на упругом основании на столь низких частотах невелика. Поэтому применяют их только в сочетании с другими видами виброизоляторов, что обеспечивает высокую виброизоляцию на низких частотах (за счет виброизоляторов), а также на средних и высоких (за счет виброизоляторов и плавающего пола).

Стяжка плавающего пола (см. рис. 4.2) должна быть тщательно изолирована от стен и несущей плиты перекрытия, так как образование даже небольших жестких мостиков между ними может существенно ухудшить его виброизолирующие свойства. Поэтому при конструировании плавающего пола предусматривают мероприятия, предупреждающие просачивание бетона в упругий слой при изготовлении пола. В местах примыкания плавающего пола к стенам необходим шов из нетвердеющих материалов, не пропускающий воду.

При линейных размерах стяжки плавающего пола более 8…10 м с целью предотвращения растрескивания бетона рекомендуется выполнять разделительные швы, которые не должны проходить вблизи места установки инженерных агрегатов. Большие агрегаты следует располагать в центре отдельных плит, на которые швами разбивается вся стяжка плавающего пола.

Конструкция плавающего пола должна обеспечивать ее несущую способность на действие статической нагрузки от оборудования. За счет установки машины на железобетонную плиту достигается снижение уровня колебаний самой машины и увеличивается ее устойчивость на пружинах. На низких частотах даже при неизменном значении f0 возможно небольшое увеличение виброизоляции за счет разделения разных пространственных форм колебаний машины, установлен-ной на виброизоляторах, которое не учитывается в одномерной расчетной схеме. Однако в звуковом диапазоне частот в целом виброизоляция заметно увеличивается за счет возрастания импеданса виброизолированной установки.

При использовании фундаментных железобетонных плит в отдельных полосах частот может быть и снижение виброизоляции. Это происходит в случаях, когда из-за увеличения массы виброизолированной установки и применения больших пружин октавная полоса, в которую попадает первая волновая резонансная частота пружин, и с которой начинается «провал» виброизоляции пружинами, сдвигается на октаву вниз. Поэтому лучше устанавливать агрегат на пружинные виброизоляторы меньших номеров (при их большем количестве), чем больших (их потребуется меньше), поскольку у последних раньше начинается спад виброизоляции.

В звуковом диапазоне частот железобетонные плиты лучше работают, если (при заданной массе) они имеют минимальные размеры в плане, но большую толщину. Для повышения акустической виброизоляции не следует делать больших в плане железобетонных плит, на которых устанавливают сразу несколько машин - например, основной и резервный насосы.

Железобетонную плиту устанавливают также в тех случаях, когда жесткость подходящих к машине трубопроводов с гибкими вставками соизмерима или превышает общую жесткость виброизоляторов, которые потребовались бы для установки машины без этой плиты. Такое положение может иметь место, например, при виброизоляции насосов. За счет установки железобетонной плиты увеличивается общая масса виброизолированной установки и снижается частота ее собственных колебаний, так как уменьшается влияние жесткости присоединенных трубопроводов. В результате, дополнительно к сказанному выше, достигается увеличение виброизоляции и на низких частотах. В ряде случаев жесткость присоединенных к машине трубопроводов с гибкими вставками оказывается настолько большой, что она вообще не может быть виброизолирована без установки железобетонной плиты.

При устройстве массивных виброизолированных оснований необходимо учитывать наличие внутренних виброизолирующих элементов у вентиляционного и компрессорного оборудования. В этих случаях внутренние виброизолирующие элементы рекомендуется шунтировать с помощью резьбовых или винтовых соединений.

Виброизоляция неопорных связей (трубопроводов, воздуховодов и т.п.) выполняется с целью обеспечения требуемой свободы движения виброизолированной машины за счет снижения жесткости рассматриваемых связей. Это необходимо для эффективной работы виброизоляторов и снижения звуковой энергии, распространяющейся через эти связи.

Для виброизоляции на каждом трубопроводе (или воздуховоде), присоединенном к машине, устанавливают гибкие вставки. Их следует располагать как можно ближе к вибрирующему агрегату. Если жесткость этих вставок мала по сравнению с жесткостью виброизоляторов (например, у вентиляторов), то не имеет существенного значения, как они ориентированы. В тех случаях, когда жесткость гибких вставок сравнима с жесткостью виброизоляторов (насосные агрегаты, компрессоры) вставки следует располагать так, чтобы влияние их жесткости было минимально в направлениях действия наибольших динамических сил, развиваемых агрегатом (машиной). К примеру, гибкие вставки для насосных агрегатов имеют большую жесткость в продольном направлении и меньшую в поперечном. Поэтому их следует располагать параллельно оси вращения.

В некоторых случаях на одном трубопроводе устанавливают две гибкие вставки на двух его расположенных рядом взаимно перпендикулярных участках. Тогда обеспечивается полезная для виброизоляции относительно низкая жесткость этой связи во всех направлениях. Увеличение числа гибких вставок на трубопроводе более одной-двух не приводит к снижению, распространяющейся по нему, звуковой вибрации, которая все равно распространяется по содержащейся в нем воде (воздуху).

На участках трубопроводов (воздуховодов) между агрегатом и гибкой вставкой не рекомендуется выполнять узлы крепления к строительным конструкциям (даже виброизолированных). Трубопроводы (воздуховоды) не должны иметь жесткого контакта с ограждающими конструкциями. Часто жесткое крепление трубопроводов и воздуховодов к строительным конструкциям является причиной недопустимого уровня шума в удаленных помещениях, расположенных через несколько этажей от данного места крепления.

Крепление трубопроводов и воздуховодов к строительным конструкциям необходимо производить при помощи виброизолирующих креплений с упругим элементом. Прокладка трубопроводов (воздуховодов) через стены и перегородки должна быть выполнена с применением виброразвязанных гильз. Для виброразвязки следует применять негорючие упругие прокладки. Стыки и промежутки между воздуховодами и гильзами необходимо герметизировать невысыхающим виброакустическим герметиком. Трубопроводы и участки жестких воздуховодов рекомендуется виброизолировать материалом из вспененного каучука. Трубную изоляцию рекомендуется крепить к поверхности трубопроводов с помощью специального клея.

Виброзащитные системы на пневмогидравлических опорах . Данные системы предназначены для защиты конструкций, фундаментов и обслуживающего персонала от гармонических вибраций машин. Это пассивные виброзащитные системы основаны на антивибраторах с линейными упругими элементами, масса которых не более 2% массы машины. Пассивно-активные системы основаны на пневмогидравлических опорах. Данные опоры, помимо гидравлического устройства имеют упругие элементы. Расход жидкости через гидравлическое устройство определяется производительностью насоса объемного действия и, вследствие этого, не зависит от противодавления в полости опоры. Во время динамического сжатия в гидравлическом устройстве возникает сила гидравлического со-противления. Упругий элемент обеспечивает сопротивление опоры при статическом сжатии и восстановление при снижении сжимающего усилия. В качестве упругого элемента можно использовать пружины или газовые камеры, в которых газ своим давлением уравновешивает внешнюю нагрузку. Общая жесткость опоры зависит от жесткости газа и жесткости гидравлического компенсатора. Виброзащитные системы позволяют снижать вибрацию фундамента в 3 …5 раз.

Организационные мероприятия (защита «временем») . С этой целью применяются специально разработанные режимы труда, которые предусматривают специальные перерывы. Рекомендуется использовать режимы труда с ограничением времени работы с вибрацией не более 2/3 рабочей смены, а также внедрение технологических процессов, предусматривающих микропаузы в ходе выполнения виброопасных операций, 2-3 перерыва по 20-30 минут за смену. Они устраиваются через 1-2 ч после начала смены и через 2 ч после обеденного перерыва (продолжительность которого должна быть не менее 40 мин) и используются для активного отдыха, проведения специального комплекса производственной гимнастики, физиотерапевтических процедур.

Режимы труда для конкретных виброопасных профессий должны включаться в технологическую документацию. Режимы труда являются профилактическим мероприятием, направленным на рациональную организацию работ с вибрирующим оборудованием, а в случаях превышения санитарных норм, и на сокращение времени неблагоприятно-го воздействия вибрации на работников виброопасных профессий.

Средства коллективной защиты . К ним относятся:

– виброизолирующие площадки и коврики;

– виброизолированные сидения;

Виброизолированное кресло оператора является одним из основных средств индивидуальной защиты от вибрации. Современные конструкции кресел выполняются по двум схемам. Пассивная нерегулируемая виброизоляция, использует винтовые пружины, в сочетании с демпферами сухого трения, установленными под сиденьем. В этом случае удается снизить вредное действие вибрации в 1,5 – 2 раза на частотах выше 63 Гц. На низких частотах эффективность пассивных средств значительно снижается ввиду близости резонансов. Преодолеть это ограничение практически невозможно, поскольку на пониженной жесткости теряется устойчивость оператора и возможно появление укачивания. Кроме того, большие смещения оператора опасны как источник ошибок управления. Частично эта проблема решается, если использовать направляющие механизмы, например параллелограмм в сочетании с упругими элементами. Однако в этом случае наблюдается резкое снижение эффективности на высоких частотах вибрации.

Другое направление в конструировании кресел развивается под влиянием высоких технологий. Подвеска этих кресел выполняется на пневматических пружинах низкой жесткости для устранения низкочастотных резонансов. Для стабилизации положения оператора применяют серводвигатели, которые реагируют на вес оператора при помощи специальных датчиков. Обычно указанные конструкции имеют направляющие элементы, что сказывается на эффективности в области высоких частот.

Разработаны и успешно испытаны автоматические системы понижения жесткости в пределах амплитуды колебаний (корректоры жесткости). Применение корректоров повышает эффективность виброизоляции в два раза.

– средства защиты верхних конечностей (виброзащитные перчатки, рукавицы, вкладыши);

– средства защиты нижних конечностей (виброзащитные сапоги, стельки, вкладыши).

1. По способу передачи на человека различают:

1.1. Общую вибрацию, передающуюся через опорные поверхности на тело сидящего или стоящего человека (через "точки контакта");

1.2. Локальную вибрацию, передающуюся через руки человека.·

2. По источнику возникновения вибраций:

2.1. Локальная вибрация, которая передаётся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием.

2.2. Локальная вибрация, которая передаётся человеку от ручного немеханизированного инструмента (без двигателей), например, через рукоятки молотков или от обрабатываемых деталей (шлифовка вручную).·

2.3. Общая вибрация 1 категории. Это транспортная вибрация, которая воздействует на человека в самоходных и прицепных машинах иных транспортных средствах при передвижении по местности, агрофонам и дорогам.

Источниками транспортной вибрации являются – трактора, бульдозера, автомобили, комбайны и др.

2.4. Общая вибрация 2 категории . Это транспортно-технологическая вибрацию, которая воздействует на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок.

К источникам транспортно-технологической вибрации относят: экскаваторы (в том числе роторные), краны промышленные и строительные, машины для загрузки (завалочные) мартеновских печей в металлургическом производстве; горные комбайны, шахтные погрузочные машины, самоходные бурильные каретки, различные путевые машины, бетоноукладчики, напольный производственный транспорт. В эту категорию следует отнести и все то, что движется по рельсам или другим путям (трамвай, поезд, межэтажный лифт). Необходимо использовать основной признак группы: "специально подготовленные поверхности производственных помещений, промышленных площадок, горных выработок". Данное обстоятельство является актуальным при поиске санитарных норм для оценки вибрации в кабине машиниста поезда, лифта, трамвая, мостового или козлового крана.·

2.5. Общая вибрация 3 категории . Это технологическая вибрация, которая воздействует на человека на рабочих местах стационарных машин или передаётся на рабочие места, не имеющие источников вибрации. Основное условие для определения этого вида вибрации: источник неподвижно закреплён на половом настиле, перекрытии, площадке и пр.

б) Категория 3 б. На рабочих местах складов, столовых, бытовых комнат, дежурных и других производственных помещений, где нет машин, генерирующих вибрацию (стационарно закреплённый источник вибрации находится в соседнем помещении);

в) Категория 3 в. На рабочих местах в помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, здравпунктов, конторских помещениях, рабочих комнатах и других помещениях для работников умственного труда (стационарно закреплённый источник вибрации находится в отдалённых помещениях).

Отметим, что на морских и речных судах вибрация относится к технологической категории, поскольку основной источник вибрации – двигатели судна, закреплены неподвижно к его корпусу.

Если двигатель автомобиля и других транспортных средств работает на холостых оборотах, то в этом случае вибрация на полу кабины и сиденье водителя, машиниста относится к технологической категории 3а. При движении транспортных средств на их водителей, машинистов действует транспортная вибрация.

В этой связи возникает вопрос, какую вибрацию измерять в автомашинах?

Всё зависит от целей и задач исследования. Так, чаще всего в аттестации рабочих мест по условиям труда основная задача замеров вибрации состоит в оценке технического состояния двигатели и всего автомобиля.

Дело в том, что аттестационная процедура проводится в короткие сроки при отсутствии стандартного дорожного покрытия (автодрома). Поэтому условий для корректных замеров транспортной вибрации нет. Одно дело измерять вибрацию в кабине автомобиля на асфальтированной дороге, другое дело – на грунтовке.

С другой стороны, аттестация рабочих мест имеет целью оптимизацию условий труда, которые во многом зависят от технического состояния транспортной единицы. Если её состояние не удовлетворяет требованиям, то по результатам замеров технологической вибрации (на холостых оборотах) есть, кому предъявить претензии – работодателю. Претензии по превышениям транспортной вибрации к работодателю из-за некачественного дорожного полотна не рациональны.

Если целью исследования является изучение неблагоприятного воздействия транспортной вибрации, то замеры проводят при движении автомашины. Эта задача наиболее часто возникает тогда, когда автомобиль передвигается по ограниченному участку (челноком), например, вывоз полезных ископаемых из горнорудного карьера. Другой пример: работа тракториста при пахоте, планировке территории и т.д.

Обсудим ситуацию. В клинике института у водителя А. мощного автомобиля "БЕЛАЗ" обнаружено устойчивое поражение межпозвонковых дисков. Диагноз: профессиональное заболевание, связанное с воздействием общей (транспортной) вибрации.·

Этот человек проработал на вывозе руды из Учалинского карьера 26 лет. В течение этого периода, управляя автомобилем, он спускался в карьер, и поднимался из карьера по пять-шесть раз в смену. Наши исследования – замеры транспортной вибрации (на полу кабины и сиденье) и шума на этом ограниченном пути проводились в начале, середине и в конце маршрута, в тёплый сезон, в дождливую и сухую погоду. Они показали значительное превышение нормативов шумового и вибрационного фактора.

В санитарно-гигиенической характеристике, составленной по результатам аттестации рабочих мест,· было указано, что уровни шума в кабине "БЕЛАЗА" превышают предельно-допустимые, а уровни транспортной вибрации находятся ниже допустимых.

Возникает вопрос: возможна ли такая ситуация? Источник шумовой и вибрационной волны один – двигатель автомобиля, и эти волны должны быть связаны между собой по интенсивности, частоте, амплитуде и т.д. Оказалось, что в санитарном документе использованы результаты замеров технологической вибрации на разных автомобилях. Такая гигиеническая характеристика условий труда работника с подозрением на профессиональное заболевание ошибочна, поскольку не учитывает реальные условия трудовой деятельности водителя, и не отвечает основной задаче - рационально оценить влияние общей вибрации на здоровье работника.

Оценка технического состояния разных автомобилей направлена на выявление неисправной техники, но не на оценку влияния этой техники на работника.

Вопросы о гигиеническом выборе точек замеров вибрации в автомашинах, тракторах, бульдозерах и других машинах зависит от их устройства.

В настоящее время уже нет транспортных средств с усиленно вибрирующими рукоятками, рулями, педалями. Поэтому основными точками для замеров должны быть – на полу и сиденье. И ведущая задача замеров заключена в оценке виброгасящих свойств сиденья, что очень важно для характеристик условий труда водителей, трактористов, машинистов.

2.6. Нормы технологической вибрации коммунальных объектах обоснованны субъективными ощущениями человека и, поэтому представлены допустимыми уровнями .

По источнику вибрации, различают две категории.

2.6.1 Технологическая вибрация в жилых помещениях и общественных зданиях от внешних источников: городского рельсового транспорта, автотранспорта, промышленных предприятий и передвижных промышленных установок (при эксплуатации гидравлических и механических прессов, строгальных, вырубных и других металлообрабатывающих механизмов, поршневых компрессоров, бетономешалок, дробилок, строительных машин и др.);

2.6.2. Технологическая вибрация в жилых помещениях и общественных зданиях от внутренних источников: инженерно-технического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, насосные, пылесосы, холодильники, стиральные машины и т.п.), а также встроенных предприятий торговли (холодильное оборудование), предприятий коммунального и бытового обслуживания, котельных и т.д.

2.7. Общую технологическую вибрацию также разделяют на две категории (3г, 3д):

2.7.1. Технологическая вибрация в жилых помещениях, палатах больниц, санаториев;

2.7.2. Технологическая вибрация в административно-управленческих помещениях.

3. По направлению действия, вибрацию подразделяют в соответствии с направлениями осей трёхмерной ортогональной системы координат :

3.1. Локальную вибрацию измеряют по осям ортогональной системы координат X. Y. Z.

Рисунок 7 иллюстрирует направления замеров локальной вибрации в двух случаях: при охвате рукой сферической поверхности (рычаг) и охвате рукоятки инструмента. Ось Х параллельна оси места охвата источника вибрации (рукоятки, ложемента, рулевого колеса, рычага управления, удерживаемого в руках обрабатываемого изделия и т.п.). Ось Y перпендикулярна ладони, ось Z лежит в плоскости, образованной осью Х и направлением подачи или приложения силы (или осью предплечья, когда сила не прикладывается).

Рисунок 7 – Ортогональная система координат при замерах локальной вибрации.

Изменение положения, например, рукоятки молотка из горизонтального на угол 45 0 порядок указанных осей не меняет – всё зависит от охвата предмета.

3.2. Общую вибрацию также измеряют по осям ортогональной системы координат X,Y. Z., что показано на рисунке 8. При этом ось Х – это направление от спины к груди (сагиттальная проекция). Ось Y – от правого плеча к левому (фронтальная проекция). Ось Z – перпендикулярна опорным поверхностям тела в местах его контакта с сиденьем или полом.

Рисунок 8 – Ортогональная система координат при положении работника сидя или стоя.

Отметим, что:

2. Зачастую наибольшую вибрационную энергию несёт вертикальная ось Z . При преобладании колебательной энергии по боковым осям – станок сойдёт с фундамента, а автомобиль - перевернётся,

3. Выполнить замеры вибрации на половом настиле комнаты (помещения) по боковым, горизонтальным (фронтальной и сагиттальной) или иначе – по латеральным осям Х и У , практически невозможно,

4. При замерах общей вибрации принятые оси не сдвигаются относительно пространства (лежачего или стоящего, сидящего человека),

5. При замерах локальной вибрации, оси сдвигаются относительно пространства, но в зависимости от охвата предмета. Так, если горизонтально расположенное рулевое колесо сдвинуть на 30-40 градусов, то и ось Z изменит своё направление от вертикали на эту же величину.

4. По характеру спектра вибрации выделяют:

4.1. Узкополосные вибрации, у которых контролируемые параметры в одной 1/3 октавной полосе частот более чем на 15 дБ превышают значения в соседних 1/3 октавных полосах;

4.2. Широкополосные вибрации - с непрерывным спектром шириной более одной октавы.

5. По частотному составу вибрации выделяют:

5.1. Низкочастотные вибрации (с преобладанием максимальных уровней в октавных полосах частот 1-4 Гц для общих вибраций, 8-16 Гц - для локальных вибраций);

5.2. Среднечастотные вибрации (8-16 Гц - для общих вибраций, 31,5-63 Гц - для локальных вибраций);

5.3. Высокочастотные вибрации (31,5-63 Гц - для общих вибраций, 125-1000 Гц - для локальных вибраций).

6. По временным характеристикам вибрации выделяют:

6.1. Постоянные вибрации, для которых величина нормируемых параметров изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения;

6.2. Непостоянные вибрации, для которых величина нормируемых параметров изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с, в том числе:

6.2.1. Колеблющиеся во времени вибрации, для которых величина нормируемых параметров непрерывно изменяется во времени;

6.2.2. Прерывистые вибрации, когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с;

6.2.3. Импульсные вибрации, состоящие из одного или нескольких вибрационных воздействий (например, ударов), каждый длительностью менее 1 с.

Как видим, классификация вибраций представляет собой очень сложную систему, в которой очень трудно разобраться.

Первая задача в практике измерений вибрации заключена в определении её вида для выбора нормативов. Для этого можно воспользоваться более простой схемой, которая показана на рисунке 9.



Рисунок 9 – Краткая классификация производственной вибрации

Вибрация – это механические колебательные движения системы С упругими связями. Вибрация характеризуется спектром частот и такими кинематическими параметрами, как виброскорость и виброуско­рение или их логарифмическими уровнями в децибелах (дБ).

Виды вибраций

Вибрацию классифицируют следующим образом:

1. По способу передачи человеку:

  • локальная вибрация, передающаяся на руки работника;
  • общая вибрация, передающаяся через опорные поверхности тела в положении сидя (ягодицы) или стоя (подошвы ног).

2. По частотному составу:

  • низкочастотная вибрация (с преобладанием максимальных уровней в октавных полосах 1-4 Гц и 8-16 Гц соответственно для общей и локальной вибрации);
  • среднечастотная вибрация (8-16 Гц для общей вибрации, 31,5 и 63 Гц для локальной вибрации);
  • высокочастотная вибрация (31,5 и 63 Гц для общей вибрации, 125-1000 Гц для локальной вибрации).

3. По направлению вибрационного воздействия – в соответствии с направлением осей ортогональной системы координат:

  • для общей вибрации направление осей Xо, Yо, Zо и их связь с телом человека следующая: ось Xо – горизонтальная от спины к груди; ось Yо – горизонтальная от правого плеча к левому); Zл – вертикальная ось, перпендикулярная опорным поверхностям тела в местах его контакта с сиденьем, полом и т.п.
  • для локальной вибрации направление осей Xл, Yл, Zл и их связь с рукой человека следующая: ось Xл – совпадает или параллельна оси места охвата источника вибрации (рукоятки, ложемента, рулевого колеса, рычага управления, удерживаемого в руках обрабатываемого изделия и т.п.); ось Yл – перпендикулярна ладони, а ось Zл – лежит в плоскости, образованной осью Xл и направлением подачи или приложения силы, и направлена вдоль оси предплечья.

4. По характеру спектра:

  • узкополосная вибрация – у которой контролируемые параметры в одной третьоктавной полосе частот более чем на 15 дБ превышает значения в соседних третьоктавных полосах;
  • широкополосная вибрация – с непрерывным спектром шириной более одной октавы.

5. По временным.характеристикам:

  • постоянная вибрация, для которой величина виброскорости или виброускорения изменяется не более чем в 2 раза (па 6 дВ) за время наблюдения;
  • непостоянная вибра­ция (колеблющаяся, переменная, импульсная), для которой величина виброскорости или виброускорения изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 минут.

Производственными источниками локальной вибрации являются машины ударного, ударно-вращательного и вращательного действия. Локальная вибрация имеет место при точильных, наждачных, шли­фовальных, полировочных работах, выполняемых на стационарных станках с ручной подачей изделий, а также при работе ручными инструментами.

Общая вибрация по источнику возникновения бывает: транспортной, транспортно-технологической и технологической.

Водители транспортных машин (тракторов, самоходной сельхозтехники, грузового автотранспорта, землеройных машин и др.), а также операторы транспортно-технологического оборудования (экскаваторов, подъемных кранов, горнодобывающих машин, бетоно­укладчиков и др.) подвергаются воздействию общей и локальной вибрации. На рабочие места передается низкочастотная толчкообразная вибрация беспорядочного характера, возникающая в процессе пере­движения машин по неровной поверхности или от работы подвижных частей механизмов. На рабочее место водителя, в том числе на органы управления передается вибрация, возникающая в результате работы двигателя.

К источникам технологических вибраций относится обо­рудование, действие которого основано на использовании вибрации и ударов (виброплатформы, вибростенды, молоты, штампы, прессы и пр.), а также мощные электрические установки (компрессоры, насо­сы, вентиляторы, некоторые металлообрабатывающие станки и др.).

Воздействие повышенного уровня вибрации на организм человека

Вибрация относится к факторам, обладающим значительной биологической активностью. Характер, глубина и направленность функциональных сдвигов со стороны различных систем организма определятся прежде всего уровнем, спектральным составом и продолжительностью воздействия вибрации.

Нарушения здоровья работающего, обусловленные локальной или общей вибрацией, складываются из поражении нейрососудистой, нервно-мышечной систем, опорно-двигательного аппарата, изменений обмена веществ и др. При всех видах вибрационной болезни нередко наблюдаются изменения со стороны центральной нервной системы, которые связаны с комбинированным действием вибрации и интенсивного шума, постоянно сопутствующего вибрационным про­цессам.

По статистическим данным, 1/4 выявленных профессиональных заболеваний связано с воздействием вибрации и шума. Наиболее высокая заболеваемость вибрационной болезнью регистрируется в тяжелом, энергетическом, транспортном машиностроении, угольной промышленности и цветной металлургии.

Профилактические мероприятия по снижению уровней вибрации

Комплекс профилактических мероприятий, снижающих уровни вибрации оборудования, сокращающих время контакта с ним и ограничивающим влияние неблагоприятных сопутствующих факторов производственной сферы включает гигиеническое нормирование, организационно-технические и лечебно-профилактические меры.

Ос­новным документом, регламентирующим параметры производственных вибраций, являются Санитарные нормы СН 2.2.4/2.1.8.566-96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий». В них содержится классификация вибрации, методы гигиени­ческой оценки вибрации, нормируемые параметры и их допустимые величины.

Санитарными правилами и нормами СанПиН 2.2.2.540-96 «Гигиенические требования к ручным инструментам и организации работ» установлены требования к ручным машинам (массе), весу, воспринимаемому руками оператора при выполнении рабочих операций, силе нажатия, необходимой для работы в номинальном режиме, усилию нажатия пусковых устройств. В названном документе также содержатся правила организации работ с ручными инструментами и профилактические мероприятия.

Имеется ряд государственных стандартов, которые регламентируют гигиенические параметры вибрации машин и оборудования.

Основные методы и средства защиты от вибрации

Основными методами и средствами защиты от вибрации являются:

  • устранение непосредственного контакта с вибрирующим обо­рудованием путем применения дистанционного управления, промышленных роботов, автоматизации;
  • уменьшение интенсивности вибрации непосредственно в источнике;
  • применение вибродемпфирования, динамического виброгашения, активной и пассивной виброизоляции;
  • рациональная организация режима труда и отдыха;
  • создание комплексных бригад с взаимозаменяемостью про­фессий;
  • использование средств индивидуальной защиты;
  • организация активной дифференцированной диспансеризации работников виброопасных профессий;
  • тепловые процедуры для рук в виде гидропроцедур или сухого воздушного обогрева;
  • взаимомассаж и самомассаж рук и плечевого пояса;
  • производственная гимнастика;
  • ультрафиолетовое облучение;
  • витаминопрофилактика.

В данной инструкции изложены основные функции сайта, и как ими пользоваться

Здравствуйте,

Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете функции каждой кнопки.
Мы начнем сверху, продвигаясь вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии все кнопки располагаются, исключительно сверху вниз.
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы, попадете на главную страницу.
«Главная» - отправит вас на первую страницу.
«Разделы сайта» - выпадет список разделов, нажав на один из них, попадете в раздел интересующий Вас.

На странице билетов добавляется кнопка "Билеты", нажимая - разворачивается список билетов, где выбираете интересующий вас билет.

«Полезные ссылки» - нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.

В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.

  • Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
  • Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
  • Третья кнопка выводит инструкцию, которую Вы читаете. :)
  • Последняя кнопка с изображением книги (доступна только на билетах) выводит список литературы необходимой для подготовки.

Опускаемся ниже, в серой полосе расположились кнопки социальных сетей, если Вам понравился наш сайт нажимайте, чтобы другие могли так же подготовиться к экзаменам.
Следующая функция «Поиск по сайту» - для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты.
Последняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно, либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.


Самое обсуждаемое
Как уволиться на расстоянии Как уволиться дистанционно с вахтовой работы Как уволиться на расстоянии Как уволиться дистанционно с вахтовой работы
Рассказ о профессии родителей окружающий мир 2 Рассказ о профессии родителей окружающий мир 2
Презентация Презентация "Фосфор" презентация к уроку по химии (9 класс) на тему


top