Что такое подшипники и где они используются. Устройство подшипника - как работают шарики и ролики? Какими бывают подшипники

Что такое подшипники и где они используются. Устройство подшипника - как работают шарики и ролики? Какими бывают подшипники

Идея создания колёсного подшипника настолько же древняя, насколько, наверное, и само колесо. А всё благодаря тому, что подшипник обеспечивает способность свободного качения без каких-либо разрушительных последствий износа и трения во время движения. В данной статье будут определены и обсуждены отдельные элементы подшипника. Также мы рассмотрим и виды подшипников. Независимо от того какой формы и какого типа тот или иной подшипник, все они служат одной основной цели, а главным компонентом в них являются ролики, шарики и цилиндрики.

Что такое подшипник?

Подшипник – это изделие, которое поддерживает вал, ось, а также любую другую подвижную конструкцию, которое обеспечивает вращение, качение или линейное перемещение с минимальным сопротивлением, что передаёт нагрузку от движущегося узла на другие элементы конструкции. Но не всем известно о том, что подшипники вокруг нас повсюду, как в быту, так и во всех промышленных отраслях. И тем более далеко не всем известно насколько важно диагностировать состояние подшипников, правильно их выбирать, монтировать и обслуживать.

Зачастую, именно неправильная установка подшипника способствует его неожиданному выходу из строя и как следствие – авария, если подшипник колёсный или ступичный. Так же и на промышленном производстве могут возникнуть опасные аварийные ситуации, из-за нефункционирования такой, казалось бы, маленькой и незначительной детали, как подшипник. Например ситуация, возникшая в связи перебоями в вентиляции на опасных производствах.

Виды и типы подшипников

Шарикоподшипники

Главной отличительной особенностью устройства шариковых подшипников являются сами шарики, естественно. Это самый распространённый вид подшипников. Они часто используются в автомобилях, электродвигателях, инвентаре для спорта и бытовой технике. Основатель немецкой компании «FAG», производящей шариковые и роликовые подшипники, изобрёл технологию массовой обработки шаров. Так как их сферическая форма позволяет шарикам вращаться свободно во всех возможных направлениях, они имеют возможность обработки как радиальных так и осевых нагрузок.

Но, в силу своей идеально круглой формы у таких шарикоподшипников очень маленькая площадь контакта. В силу такой особенности их применяют в тех местах автомобиля, где нагрузка самая маленькая, а также они не подлежат сильному давлению и ударам с толчками от воздействий, обусловленных дорожным покрытием. Если возникает необходимость применения шариковых подшипников для больших нагрузок, тогда подразумевается увеличение диаметра шарика, в следствии чего подшипник конструктивно в разы увеличивается в размерах пропорционально диаметрально.

Такие механизмы сконструированы из деталей цилиндрической формы, имеющих идентичный диаметр по всему их периметру. Любая нагрузка, что оказывается на них радиально, распространяется по наиболее широкой точке контакта, чем у шариковых подшипников, поэтому они прекрасно подходят для многих тяжёлых эксплуатационных условий. Недостатки прямых роликовых подшипников выражены их формой. Она не позволяет им принимать на себя серьёзные осевые нагрузки. В узлах подшипников с небольшим диаметром вала используются прямые роликоподшипники, которые зачастую используются в труднодоступных местах, например, как коробка передач.

Конические подшипники

Данные механизмы состоят из роликов, но в отличие от предыдущих цилиндрических, ролики имеют конусообразную форму. Конические ролики в подшипниках необходимы для принятия на себя высокой радиальной или осевой нагрузки. Также они способны выдерживать мощные удары. Такие подшипники зачастую применяются внутри колёсных ступиц. Некоторые автомобильные производители используют зеркальное расположение двух подшипников в одном, то есть конические ролики обращены в противоположные стороны.

Устройство, состав, детали и элементы подшипника

Обойма является металлическим кольцом с гладкой внешней и внутренней, по которой происходит вращение, поверхностью. Наружная обойма подшипника в автомобилях современности всё чаще играет роль ступицы, что означает замену всего узла подшипника, а не того подшипника, который, как всем нам уже привычно, должен быть запечатан внутри неё. Если Вы столкнулись с составным подшипником, в состав которого входит внутренняя обойма и сепаратор с шариками, отдельная наружная обойма и сальник, то есть такие люди, которые могут упростить замену, не демонтируя наружной обоймы, запрессованной в ступицу.

Повторное использование старой обоймы категорически запрещено, даже в том случае, если она находится в прекрасном состоянии, на первый взгляд. Вы корректно это не определите на глаз, а с ресурса нового подшипника просто снимите половину таким поступком. Вышедший из строя старый подшипник означает тот факт, что все его элементы износились вышли из строя.

Сепаратор подшипника – это специальная обойма своеобразной формы. Она имеет перфорацию по всей площади составляющих элементов подшипника – роликов и шариков. Это своеобразная клетка, которая представляет собой внутреннюю поверхность с вращающимися подшипниками. Подшипниковые сепараторы, как правило, отдельно приобрести нельзя, ведь они являются основой подшипника. Сальник подшипника – это прокладка из закалённой резины кольцеобразной формы.

Сальник ещё имеет своё второе неправильное название – пыльник. Он предназначается для того, чтобы закрывать ту часть подшипника, из которой может вытечь смазка или попасть вода. А ведь пыльник подразумевает только защиту от пыли. Эти уплотнительные элементы также подвергаются износу со всеми остальными частями подшипника, поэтому они также должны заменяться вместе со всем. Если в Вашем автомобиле подшипник или целый подшипниковый узел с отсутствием резинового уплотнителя или он не поставляется в комплекте, советуем приобрести его отдельно и заменить.

Ступица колеса представляет собой литой или выкованный металлический элемент, к которому крепится автомобильное колесо. Колёсные подшипники находятся, как правило, в самой ступице колеса, это обеспечивает ему свободное вращение вокруг своей оси. Такие подшипники зачастую называют ступица-подшипник. Такие подшипники продаются только в коллаборации со ступицей, то есть целым узлом, что облегчает замену и исключает неправильную установку.

Смазка подшипников – это высокотехнологичный продукт на нефтяной или синтетической основе, который предназначается для смазывания подшипниковых поверхностей в местах постоянного сильного трения. В отличие от моторного и трансмиссионного масел, эта смазка не теряет своей густоты и вязкости даже при экстремальных температурах. В силу своей сильной вязкости не предназначается для работы на поверхностях с минимальными зазорами. Во время выполнения работ по ремонту должна использоваться исключительно чистая смазка. Если она была оставлена на хранение на открытом воздухе в открытой банке, то пыль и грязь осядут на ней, как на магните. А слой из таких инородных микротел – очень большая угроза для нового подшипника.

В чём разница между колёсным и ступичным подшипниками?

Немного сложно воспринимать на слух всю терминологию подшипников. Да, мы согласны, но зато видны различия между полноприводнысм, заднеприводными и переднеприводными автомобилями. Всё зависит от того, какие колёса являются ведущими.

Так, например, подшипники для ведущих колёс называются ступичными, независимо от того, какой привод в автомобиле. Эти подшипники вмонтированы на ступицу вала, который вращает внутреннюю ось подшипника. Подшипники на ведомых же осях, будь то задняя или передняя, называются колёсными. Они установлены между колёсной ступицей и обычным валом большого рычага. Автомобили с полным приводом оснащаются четырьмя ступичными подшипниками. Но вот интересно то, что независимо от того какой подшипник необходим колёсный или ступичный, подразумевается одна и та же деталь.

Замена подшипника

Произвести замену ступичного подшипника можно как своими руками, так и на специализированных станциях технического обслуживания. Но скажем сразу, что особой сложности в данной процедуре нет и собственноручная замена будет финансово оправданной и не сильно затратной по времени. Итак рассмотрим замену подшипника на примере передней ступицы автомобиля. Полезно знать! Замену подшипника можно произвести даже без съёмника ступицы. А ведь это прекрасно облегчает задачу, ведь в конце замены не нужно будет делать сход развал, потому что он попросту не собьётся.

1. Сначала прибегаем к помощи домкрата и поднимаем переднее колесо. Затем обычным накидным ключом откручиваем гайку с гранаты и болты с самого колеса. Если гайка слишком затянута или поедена коррозией, при её откручивании Вы можете столкнуться с некоторыми проблемами. Для того, чтобы она поддалась, нужно её слегка просверлить сбоку до резьбы. Затем зубилом, желательно тупым, раскройте. Вот гайка и с лёгкостью открутилась.

2. Итак, болты и гайки сняты, принимаемся за демонтаж колеса. Важно! Чтобы автомобиль не соскочил с домкрата, подложите под его днище крепкие пеньки. Колесо сняли, приступаем к отделению шаровой от передней стойки.

3. Открутите два болта на 17 и аналогичные болты с тормозного суппорта. Болты открутили, детали расслабили, хорошо. Далее следует потянуть стойку и с лёгкостью вытащить гранату со ступицы.

4. После этого снимите тормозной диск, аккуратно сбивая молотком, ударяя по его краям, одновременно прокручивая. Затем сбейте зубилом обойму подшипника.

5. После проверьте состояние ступицы, чтобы убедиться в том, не стоит ли проводить её замену. Ведь подшипник на испорченной ступице будет совсем слабо держаться или не держаться совсем и колесо будет разболтано.

6. Седло подшипника тщательно протрите до блеска и вставьте стопорное кольцо. Теперь можно и новый подшипник вставить. Вставляйте и ровняйте подшипник в ступичное седло, совершив несколько несильных ударов молотком по кругу. Затем возьмите крепкий металлический штырь и наставьте его на внутреннюю обойму подшипника. Сильными ударами вбейте её в ступицу и вставьте штопор. Осталось лишь вставить гранату в ступицу.

7. Затяните гайку на гранате, только без шайбы, тем самым образом затягивая ступицу в подшипник. Открутите гайку и подложите теперь шайбу. Теперь гайки можно затягивать достаточно туго и крепко.

8. Сборка происходит в противоположной разбору последовательности.

Международная организация по стандартизации разработала общие требования к основным размерам:

  • Метрических радиальных подшипников качения - стандарт ISO 15:1998 (за исключением конических роликоподшипников);
  • Метрических радиальных конических роликоподшипников - стандарт ISO 355:1977;
  • Метрических упорных роликоподшипников - стандарт ISO 104:2002;
  • Для иных серий применяется "европейская" система обозначений.

Обозначение типов подшипников

Идентификационный код подшипника составлен из ряда букв и цифр, имеющих определенное значение, и разделен на три составные части, начиная слева направо:

  • Первая часть - конструктивное исполнение подшипника;
  • Вторая часть - размерная серия подшипника;
  • Третья часть - диаметр отверстия подшипника.

Первая часть условного обозначения отображает конструктивную форму. Данная часть всегда указана в цифровой форме, за исключением цилиндрических роликоподшипников и шарикоподшипников со съемным кольцом.

Вторая часть условного обозначения отображает тип подшипника:

0 Радиально-упорные шарикоподшипники

1 Самоустанавливающиеся шарикоподшипники

2 Сферические роликоподшипники, сферические упорные роликоподшипники

3 Конические роликоподшипники

4 Двухрядные радиальные шарикоподшипники

5 Упорные шарикоподшипники

6 Однорядные радиальные шарикоподшипники

7 Однорядные радиально-упорные шарикоподшипники

8 Упорные цилиндрические роликоподшипники

N Цилиндрические роликоподшипники (за буквой “N” могут следовать еще одна или две буквы, указывающие на конструкцию упорных бортиков цилиндрических роликоподшипников, например, NJ, NU, NUP)

QJ Шарикоподшипники с четырехточечным контактом

Вторая часть условного обозначения отображает размерную серию подшипника: могут определяться и иные размеры подшипника, точнее наружный диаметр и ширина, в соответствии с диаметром отверстия. При одинаковом отверстии и наружном диаметре, подшипник может иметь разную ширину. Поэтому можно условно разделить комбинацию на серию диаметров и серию ширины.

Серия диаметров так же, как и серия ширины, обозначаются целыми числами; оба номера создают размерную серию подшипников. Приступив к определению обозначения слева направо, первый номер указывает на серию ширины, второй - на серию диаметров. Такая комбинация носит называние Размерная Серия, и предшествует код диаметра отверстия. Если тип подшипника предусматривает лишь одну серию ширины, номер ширины не указывается. В состав обозначения Размерной Серии будет входить исключительно цифра, содержащая серию диаметров.

Третья часть отображает диаметр отверстия и включает в себя две цифры, имеющие следующую систему кодирования:

00 = отверстие Ø 10 мм
01 = отверстие Ø 12 мм
02 = отверстие Ø 15 мм
03 = отверстие Ø 17 мм
04 = отверстие Ø 20 мм (точнее 20: 5 = 04)
05 = отверстие Ø 25 мм (точнее 25: 5 = 05)
... до:
96 = отверстие Ø 480 мм (точнее 480: 5 = 96)

Если диаметр отверстия подшипника равен или больше 500 мм, часть условного обозначения, указывающего на Размерную Серию, отделяется косой чертой (/), за которой следует диаметр отверстия, указанный в миллиметрах. Напр. 62/500. В отношении определенного типа подшипников первые две части условного обозначения остаются неизменными, а последняя часть поддается изменениям, точнее часть, определяющая код диаметра отверстия. Неизменная часть условного обозначения, включающая в себя конструктивную форму и размерную серию, обычно называется "серия подшипников".

Серия подшипников
Тип
подшипника
Серия
подшипника
Обозначение
типов
подшипников
Размерная
серия
Однорядные
радиальные
шарикоподшипники
618 6 18
619 6 19
160 6 (0)0
60 6 (1)0
62 6 (0)2
63 6 (0)3
64 6 (0)4
Двухрядные
радиальные
шарикоподшипники
42 4 (2)2
44 4 (2)3
Однорядные
радиально-упорные
шарикоподшипники
719 7 19
70 7 (1)0
72 7 (0)2
73 7 (0)3
74 7 (0)4
Двухрядные
радиально-упорные
шарикоподшипники
32 (0) 32
33 (0) 33
Шарикоподшипники
с
четырехточечным
контактом
QJ2 QJ1 (0)2
QJ3 QJ1 (0)3
Самоустанавливающиеся
шарикоподшипники
12 1 (0)2
22 (1) 22
13 1 (0)
23 (1) 23
Однорядные
цилиндрические
роликоподшипники
NU10 NU 10
NU2 NU (0)2
NU22 NU 22
NU32 NU 32
NU3 NU (0)3
NU23 NU 23
NU4 NU (0)4
Конические
роликоподшипники
329 3 29
320 3 20
330 3 30
331 3 31
302 3 02
322 3 22
332 3 32
303 3 03
313 3 13
323 3 23
239 2 39
Сферические
роликоподшиппики
230 2 30
240 2 40
231 2 31
241 2 41
222 2 22
232 2 32
213 2 03
223 2 23
Упорные
шарикоподшипники
511 5 11
512 5 12
513 5 13
514 5 14
532 5 32
533 5 33
534 5 34
Двойные
упорные
шиарикоподшипники
522 5 22
523 5 23
524 5 24
Упорные
сферические
роликоподшипники
292 2 92
293 2 93
294 2 94

1 - Цифры в скобках в обозначение кода серии подшипников не включены
2 - Цилиндрические роликоподшипники включают серию NJ, NUP, N, NF и NU

Суффиксы подшипников

Z - Односторонняя защитная металлическая шайба для подшипника

ZZ - Двусторонняя защитная металлическая шайба для подшипника

RS - Одностороннее резиновое уплотнение для подшипника

2RS - Двустороннее резиновое уплотнение для подшипника

N - Канавка для стопорного кольца на внешнем кольце подшипника

NR - Канавка и стопорное кольцо на внешнем кольце

M - Латунный сепаратор

MA - Латунный сепаратор центрированный по внешнему кольцу

MB - Латунный сепаратор центрированный по внутреннему кольцу

TN - Усиленный полиамидный сепаратор

P6 - Класс точности соответствует ISO 6

P5 - Класс точности соответствует ISO 5

P4 - Класс точности соответствует ISO 4

C2 - Серия зазоров меньше нормальной

C3 - Серия зазоров больше нормальной

C4 - Серия зазоров больше C3

C5 - Серия зазоров больше C4

K - Коническое отверстие

ПРИКЛАДНАЯ МЕХАНИКА И

ОСНОВЫ КОНСТРУИРОВАНИЯ

Лекция 10

ЧЕВЯЧНЫЕ ПЕРЕДАЧИ

А.М. СИНОТИН

Кафедра технологии и автоматизации производства

Подшипники качения Общие сведения

Подшипник качения представляет собой готовый узел, основным элементом которого является тела качения – шарики или ролики, установленные между кольцами и удерживаемые на определенном расстоянии друг от друга обоймой, называемой сепаратором (рис. 1).

1- наружное кольцо; 2- внутреннее кольцо; 3 - шарик; 4 - сепаратор.

Рисунок 1 – Шариковый однорядный радиальный подшипник

В процессе работы тела качения перекатываются по беговым дорожкам колец, одно из которых в большинстве случаев неподвижно. Распределение нагрузки между несущими телами качения неравномерно (рис. 2) и зависит от величины радиального зазора в подшипнике и от точности геометрической формы его деталей.

Рисунок 2 – Схема распределения нагрузки между телами качения в подшипнике

Рисунок 3 – Блок зубчатых колец на игольчатых подшипниках без колец

В отдельных случаях для уменьшения радиальных размеров подшипника кольца отсутствуют (рис.3) и тела качения перекатываются непосредственно по цапфе и корпусу. Подшипники качения стандартизованы и изготовляются в массовом производстве специализированными заводами.

Достоинства:

    сравнительно малая себестоимость вследствие массового производства подшипников;

    малые потери на трение и незначительный нагрев. Потери на трение при пуске и установившемся режиме работы практически одинаковы;

    высокая степень взаимозаменяемости, что обеспечивает монтаж и ремонт машин, приборов;

    более высокая точность вращения;

    малый износ;

    менее чувствительны к изменению температуры окружающей среды;

    хорошо работают при отсутствии смазки и обладают высокой стабильностью момента трения;

    малый расход смазки;

    не требуют особого внимания и ухода;

Недостатки:

    увеличение веса и габаритных размеров конструкции;

    необходимость дополнительных деталей для крепления их в корпусе и на валу;

    специфический шум от перекатывания шариков (особенно при больших скоростях);

    высокая чувствительность к ударным и вибрационным нагрузкам вследствие большой жесткости конструкции подшипника;

    малонадежны в высокоскоростных приводах из-за чрезмерного нагрева и опасности разрушения сепаратора от действия центробежных сил;

    сравнительно большие радиальные размеры;

Применение

Во всех отраслях машиностроения широко применяются опоры с применением подшипников качения. Полиграфическое оборудование не является исключением. Применение подшипников качения позволило заменить трение скольжения трением качения. При этом коэффициент трения снижается до 0,0015 – 0,006 * .

Основные типы подшипников качения

На рис. 4 изображены основные типы подшипников качения. По форме тел качения они разделяются на шариковые и роликовые (цилиндрические, конические, витые, игольчатые и т.д.), по направлению воспринимаемой нагрузки – на радиальные, упорные и радиально-упорные.

1– шариковый радиальный; 2 – шариковый сферический (самоустанавливающийся); 3 - шариковый радиально-упорный; 4- роликовый радиальный; 5 - роликовый радиально-упорный (конический); 6 - роликовый сферический (самоустанавливающийся); 7 - игольчатый радиальный; 8 - шариковый упорный (простой и самоустанавливающийся)

Рисунок 4 – Основные типы подшипников качения

Радиальные шариковые подшипники – наиболее простые и дешевые. Они допускают небольшие перекосы вала (до ¼ и ½°) и могут воспринимать осевые нагрузки в пределах 70% от неиспользованной радиальной. Эти подшипники наиболее распространены в опорах полиграфического оборудования.

Радиальные роликовые подшипники благодаря увеличенной контактной поверхности допускают значительно большие нагрузки, чем шариковые (в среднем на 70-90%). Однако они совершенно не воспринимают осевые нагрузки и не допускают перекоса вала. При перекосе вала ролики начинают работать кромками и подшипник быстро разрушается. Аналогичное сравнение можно провести и между радиально-упорными шариковыми и роликовыми подшипниками.

Самоустанавливающиеся шариковые и роликовые подшипники применяются в тех случаях, когда ожидается значительный перекос вала (до 2-3°). Они имеют сферическую поверхность наружного кольца, а роликам придается бочкообразная форма. Эти подшипники допускают небольшие осевые нагрузки – до 20% от неиспользованной радиальной.

Применение игольчатых подшипников позволяет уменьшить габариты (по диаметру) при значительных перегрузках.

Большое влияние на работоспособность подшипника оказывает качество сепаратора. Сепараторы разделяют и направляют тела качения. В подшипниках без сепаратора тела качения набегают друг на друга. При этом, кроме трения качения, возникают трение скольжения, увеличиваются потери и износ подшипника. Установка сепаратора значительно уменьшает потери на трение, т.к. сепаратор является свободно плавающим и вращающимся элементом.

Подшипником называется особый сборный узел, являющийся частью опоры, поддерживающей вал и обеспечивающий свободное вращение последнего. Видов подобных устройств существует несколько. Конечно же, в обязательном порядке соблюдаются при изготовлении таких изделий, как подшипники, стандарты, предусмотренные ГОСТом.

Основные типы

Для снижения трения в узлах разного рода могут использоваться подшипники:

  • качения;
  • скольжения.

Классификация подшипников качения

Устройства этого типа имеют очень простую конструкцию. Состоят они обычно из двух колец, между которыми находятся тела качения. Последние удерживаются внутри подшипника с помощью специального сепаратора.

Классифицироваться устройства качения могут по следующим признакам:

  • направлению воспринимаемой нагрузки — осевые, радиальные, радиально-упорные;
  • виду тел качения - шарики, ролики;
  • расположению тел качения — одно-, двух- или четырехрядные;
  • форме центрального отверстия — конусные, цилиндрические.

Существуют и такие виды подшипников качения, как обычные и самоустанавливающиеся, а также сдвоенные и простые.

Разновидности подшипников скольжения

Конструкция у устройств этого типа также совершенно несложная. Основой подшипника скольжения, как и качения, являются два кольца, одно из которых движется в процессе работы механизма. Однако вместо шариков или роликов в таких устройствах используются разного рода смазочные материалы, залитые в специальный желоб. Существует подшипники скольжения:

  • гидростатические;
  • гидродинамические.

В устройства первого типа смазка подается извне посредством насоса. Гидродинамические подшипники в этом плане более удобны. В процессе работы они сами выступают в роли насоса. Смазка в них поступает из-за разницы давления между составными частями.

По конструкции подшипники скольжения бывают:

  • сферические;
  • упорные;
  • линейные.

Подшипники первого типа используются в основном в узлах механизмов, работающих на малых скоростях. Основным преимуществом устройств этой разновидности является способность эффективно выполнять свои функции даже при значительных перекосах.

Упорные подшипники устанавливаются в узлах, испытывающих сильные поперечные нагрузки. Чаще всего они применяются в турбинах и паровых установках.

Линейные подшипники при работе выполняют роль направляющих. Функционировать без перебоев они могут даже при постоянных радиальных нагрузках.

Стандарты устройств скольжения

Подшипники любой разновидности — изделия прежде всего стандартные. В противном случае подобрать подобное устройство для того или иного механизма было бы крайне сложно.

По каким же нормативам изготавливаются подшипники? ГОСТ регулирует не только собственно размеры подобных изделий, но и, к примеру, условные обозначения их конструктивных элементов и многие другие параметры. Какие именно нормативные документы регулируют изготовление устройств скольжения, можно посмотреть в представленной ниже таблице.

ГОСТ для подшипников скольжения

Норматив

Какой ГОСТ регулирует

Сокращения и условные обозначения

Параметры для расчета

Стандарты для втулок из медных сплавов

4379-2006, 29201-91

Конструктивные особенности и подшипниковые материалы

Размеры и типы колец

Размеры керамических втулок

Размеры и виды втулок, типы спекаемых материалов

Определения и термины для подшипников механизмов и машин

Основные ГОСТы для подшипников качения

При изготовлении таких устройсв также соблюдаются ГОСТы.

ГОСТ для подшипников качения

Норматив

Какой ГОСТ регулирует

Общие технические условия

Типы и конструктивные исполнения

Канавки, кольца (размеры)

Посадка валов и корпусов

Основные размеры

Требования к шарикам

Требования к роликам игольчатым/цилиндрическим

6870-81/22696-77

Гайки, шайбы для втулок

Грузоподъемность

Методы измерения вибрации

Подшипники: стандарты ГОСТа в отношении размеров

Согласно ГОСТу, все подобные изделия должны иметь определенные внутренний и внешний диаметр, а также ширину. В зависимости от этих параметров определяется серия изделий.

Серии подшипников по размерам

Серия

Диаметр внутренний (мм)

Диаметр внешний (мм)

Ширина (мм)

Вот такие могут иметь подшипники размеры. Таблица, представленная выше, зависимость диаметров и ширины подобных изделий демонстрирует наглядно.

Корпуса подшипников

Госстандарт регулирует в том числе и конструктивное оформление таких устройств. Корпус подшипника может идти:

  • с выемкой;
  • без выемки.

Изделия первой разновидности устанавливаются обычно на обработанные поверхности при направлении нагрузки радиальной от опоры. Модели без выемки монтируются, наоборот, к опоре.

Корпус подшипника может иметь разную ширину. По этому признаку различают изделия типа:

  • ШМ — широкие неразъемные;
  • УБ — узкие неразъемные;
  • РШ — широкие разъемные;
  • РУ — узкие разъемные.

Маркировка

При изготовлении таких изделий, как подшипники, стандарты соблюдаются обязательно. И конечно же, производители подобных устройств, согласно нормативам, должны предоставлять потребителям всю необходимую информацию о них. Маркировка подшипников, выпускаемых в России, состоит обычно из трех частей:

  • основного обозначения;
  • дополнительных знаков справа и слева.

    6-180306УС17Ш.

Здесь основная часть состоит из шести цифр. Дополнительный знак слева («6») обозначает класс точности изделия. Маркировка справа УС17Ш расшифровывается так:

  • У — степень шероховатости;
  • С17 — тип смазки;
  • Ш — степень шумности.

Основные цифры обозначают:

  • серии по наружному диаметру и ширине;
  • внутренние диаметры;
  • конструктивные особенности.

Классы точности подшипников

Этот параметр определяет в первую очередь сферу применения устройства. К примеру, на современные станки сложной конструкции могут устанавливаться подшипники только самого высокого класса точности. В массово же распространенных механизмах зачастую применяются не слишком качественные изделия этого типа. Класс точности подшипника может быть:

  • нормальным (в маркировке не указывается);
  • сверхвысоким — цифра 2;
  • особо высоким — 4;
  • высоким — 5;
  • повышенным — 6;
  • пониженным — 7 или 8.

Таким образом, подшипник из нашего примера относится к повышенному классу точности.

Размеры устройств: внутренний диаметр

На этот параметр указывают первые две цифры с конца в маркировке. Для подшипников с внутренним диаметром свыше 20 мм их нужно умножать на 5. В нашем примере — это цифры 0 и 6. Шесть умножаем на пять, получаем 30 мм.

Конечно же, не только большие могут иметь подшипники размеры. Таблица, представленная ниже, показывает, как маркируется внутренний диаметр маленьких изделий этого типа (до 20 мм). На 5 в данном случае ничего умножать не нужно.

Маркировка подшипников с внутренним диаметром меньше 20 мм

Маркировка

Диаметр

Серия по наружному диаметру

На этот параметр указывает третья цифра справа. При одинаковой конструкции и внутреннем диаметре подшипники могут различаться по наружному диаметру и ширине. В зависимости от этого стандартами определяется и их серия. Наружный диаметр в маркировке указывается третьей цифрой справа, а ширина — седьмой справа. Обозначения согласно стандартам в настоящее время приняты следующие:

  • 1 — серия особо легкая;
  • 2 — легкая;
  • 3 — средняя;
  • 4 — тяжелая;
  • 5 — легкая широкая;
  • 6 — средняя широкая.

Подшипник, маркированный 6-6180306, относится к средней широкой серии.

Тип подшипника

Разновидность устройства, конечно же, также указывается в маркировке. Определяются типы подшипников по четвертой цифре справа. В данном случае для шариковых подшипников приняты следующие обозначения:

  • радиальный — 0;
  • радиальный сферический — 1;
  • радиально-упорный — 6;
  • упорный — 8.

Для роликовых:

  • радиальный с короткими роликами — 2;
  • радиальный сферический — 3;
  • игольчатый или с длинными роликами — 4;
  • радиальный с витыми роликами — 5;
  • конический — 7;
  • упорно-радиальный — 9.

Подшипник с маркировкой 6-180306УС17Ш является радиальным шариковым (четвертая цифра справа — 0).

Международная система

Таким образом, в России предприятия, изготавливающие подшипники, ГОСТа придерживаться должны в обязательном порядке. Определить, что представляет собой изделие, выпущенное у нас в стране, совершенно не сложно по его маркировке. С импортными устройствами этого типа, к сожалению, все далеко не так просто.

За границей классификация подшипников существует такая же, как у нас, а вот какой-то общепринятой четкой системы обозначений, к сожалению, там не имеется. Зарубежные производители маркируют свою продукцию так, как им заблагорассудится.

Дополнительные обозначения на подшипниках, изготовленных, к примеру, в том же Китае, могут наноситься как до основного блока, так и после него. Сама базовая информация, как и в российской системе, обычно представляется в виде нескольких цифр (3-5). Чаще всего в маркировке импортных подшипников:

  • первый символ обозначает тип изделия;
  • следующие две цифры представляют серию размера ISO;
  • последние две цифры указывают код размера подшипника.

Как и в российской системе, в китайской последние две цифры, если они есть, следует умножать на 5. Таким образом можно определить внутренний диаметр подшипника в миллиметрах.

К примеру, характеристики подшипников, промаркированных как N315-EM/C3, будут такими:

  • N — это тип подшипника роликовый радиальный;
  • 315 — размеры ISO изделия;
  • буквы EM указывают в данном случае на то, что в подшипнике предусмотрен латунный сепаратор;
  • С3 — группа радиального зазора.

Магнитные подшипники

Такие устройства также достаточно часто используются в узлах механизмов. Принцип их работы основан на левитации, создаваемой магнитным полем. Подвес вала подшипники этой разновидности осуществляют бесконтактным способом. Работать устройства этого типа могут как от катушек, создающих поле, так и от постоянных магнитов. Последняя разновидность устройств используется не слишком часто. Дело в том, что такие системы, к сожалению, не отличаются стабильностью.

Подшипники качения: назначение

Преимуществами устройств подобной конструкции являются прежде всего:

  • низкий коэффициент трения;
  • малая чувствительность к качеству смазки;
  • дешевизна.

Минусами подшипников качения считаются в первую очередь слабая сопротивляемость ударным нагрузкам и невозможность работы на сверхвысоких скоростях. Также к недостаткам устройств этой разновидности относят ограничения в использовании в загрязненных средах.

Очень широкая сфера применения — это то, чем, безусловно, отличаются такие подшипники. Стандарты при их изготовлении соблюдаются в обязательном порядке и использовать их рекомендуется везде, где это возможно. На данный момент именно этот тип устройств является самым востребованным и распространенным.

Основное назначение подшипников качения, как и скольжения, уменьшать трение между движущимися частями механизма. Использоваться они, таким образом, могут в автомобильном и сельскохозяйственном машиностроении, при производстве бытовой техники, в металлургической промышленности. Очень часто подобные устройства применяются и при изготовлении перерабатывающего оборудования. Незаменимыми подшипники качения являются также и в самолетостроении, и даже в космической промышленности.

Где используются устройства скольжения

К основным преимуществам подшипников этого типа можно отнести:

  • небольшие размеры;
  • высокую скорость работы;
  • малую чувствительность к вибрационным и ударным нагрузкам.

Недостатками подшипников скольжения считаются:

  • более высокие, чем у устройств качения, потери на трение;
  • сложная смазочная система;
  • необходимость использования при изготовлении дефицитных материалов.

Применяют подшипники скольжения чаще всего там, где нельзя использовать устройства качения. К примеру, в том случае, если:

  • подшипник должен быть разъемным;
  • если на этот элемент в процессе эксплуатации приходится очень большая нагрузка;
  • на сверхбыстрых валах;
  • для работы в очень сильно загрязненных средах.

Чаще всего подшипники скольжения применяются в разного рода высокоскоростных машинах. Это могут быть, к примеру, центрифуги, шлифовальные станки и т. д. Также такие устройства используются на коленчатых валах в двигателях в том случае, если их конструкция должна быть разъемной.

Конструкция подшипника качения известна благодаря его способности обеспечивать свободное качение без повреждения, трения и износа при вращении. В современной механике ему нет аналогов, которые могли бы с большей эффективностью снижать трение и скольжение вращающихся частей.

История возникновения и развития

Отсчёт истории начинается с 3500 года до нашей эры, во времена Древнего Египта, когда его жители использовали примитивные и очень эффективные на то время опорные подшипники без применения шариков. Ближе к нашему времени, в 700-м году до нашей эры, кельты достаточно активно стали применять изделия, аналогичные современным цилиндрическим подшипникам качения.

Следующая точка в истории это 330 год до нашей эры, когда инженер Древней Греции Диад создал осадную машину, основным отличием которой отмечается применение простых скользящих элементов.

В 1490 году Леонардо Да Винчи опубликовал первый чертёж подшипника качения в мире. Отмечается тот факт, что это изобретение произвело большое впечатление в кругу специалистов этого профиля. В 1794 году он был впервые запатентован. А в 1839 году американец Исаак Баббит изобрёл специальный металлический сплав, из которого в дальнейшем изготавливались шарики. В состав этого сплава входили медь, свинец, сурьма и олово.

Большим прорывом этой области считается 1853 год, когда Филлипп Мориц Фишер создал конструкцию педального велосипеда с применением специализированных роликовых подшипников в его механизмах. Последним значимым событием стало то, что в 1883 Фридрих Фишер создал машину, которая шлифовала шарики из закалённой стали. За счёт её создания появился всемирно известный швейтфуртский подшипниковый завод, а в скором времени эта технология стала использоваться повсюду.

Классификация, виды и типы

Подшипник представляет собой кинематический механизм, задача которого состоит в определении положения подвижных элементов частей конструкции и обеспечение их более эффективного вращения относительно друг друга. Он также обеспечивает опору вращающемуся валу механизма. Параллельно с этим выполняет функцию распределения радиальной и осевой нагрузки, передавая её на корпус всей машины. Благодаря этим свойствам вал фиксируется в нужном положении и одновременно вращается вокруг своей оси.

Классификация подшипников качения имеет следующий перечень:

  • Шариковый. Главной особенностью выделяется основной подвижный элемент - шарики. Считается самым распространненым видом, наиболее активно используется в автомобилях, электродвигателях, бытовом инструменте. Благодаря их сферической форме он может вращаться в разные стороны, предназначен на выдерживание радиальной и осевой нагрузки. Но из числа недостатков можно отметить малую площадь соприкосновения, поэтому в автомобиле их применяют в местах с низкой нагрузкой без воздействия ударов и вибраций. Использование шарикоподшипников для большой нагрузки влечёт за собой увеличение диаметра шариков, поэтому размер всего элемента увеличивается.
  • Роликовый. Состоит из деталей, представленных в цилиндрической форме. Различные радиальные нагрузки, оказываемые на ролики, равномерно распределяются по широкому пятну соприкосновения. Из-за этого они считаются оптимальным вариантом для использования в тяжёлых условиях. Но из-за цилиндрической формы такой вид не в состоянии обеспечивать большие осевые нагрузки. В узлах с малым диаметром вала применяется роликовый тип и для установки в труднодоступные места.
  • Конический. Устройство подшипника состоит из конусных роликов. Применяются они для удерживания высокой радиальной, осевой и ударной нагрузок. Основным местом установки считается ступица колеса машины. Некоторые производители в одном подшипнике устанавливают два ряда конических роликов по зеркальной схеме.

Устройство и составляющие подшипника

Какие бывают подшипники описано выше, но в большинстве своём их объединяет состав элементов , из которых они состоят.:

Определение параметров по маркировке

Государственный стандарт определяет конструктивные параметры и характеристики устройства.

Корпус подшипника может быть с выемкой и без неё. В первом случае применяется на обработанных поверхностях при удерживании радиальной нагрузки. А без выемки устанавливаются в противоположном случае. Корпус бывает разной ширины, для определения типа используют следующие аббревиатуры :

  • ШМ - Широкий неразъемный.
  • УБ - Узкий неразъемный.
  • РШ - Широкий разъёмный.
  • РУ - Узкий разъёмный.

При изготовлении этих изделий производителем строго соблюдаются установленные законодательством стандарты. Поэтому производитель вместе со своим изделием предоставляет сопроводительную документацию о нём. Принятая маркировка на территории нашей страны состоит из следующих пунктов :

  • Основного обозначения.
  • Дополнительных префиксов.

Например, маркировку: 6−18030ПР20П. Основные параметры заложены в шесть цифр. Первоначальная цифра 6 - это класс точности изготовления изделия. А ПР20П можно расшифровать так :

  • П - префикс степени шероховатости поверхности.
  • Р2О - Тип используемой смазки подвижных частей.
  • П - Показатель уровня шума.

Остальной цифровой индекс обозначает :

  • Тип подшипника.
  • Указатель серии наружного диаметра и ширины.
  • Внутренний установочный диаметр.
  • Конструктивная особенность конкретной модели.

Класс точности изделия

Этот параметр указывает в основном на сферу применения изделия. Например, в современных автоматизированных станках применяются только изделия с высшим классом точности. В остальных массово применяемых механизмах используются подшипники с более низким уровнем качества при изготовлении. Класс точности может быть следующим:

  • Нормальный.
  • Сверхвысокий, применяемый индекс - 2.
  • Особо высокий - 4.
  • Высокий - 5.
  • Повышенный - 6.
  • Пониженный - от 7 до 8.

Анализируя вышеприведённый пример, можно сделать вывод, что изделие относится к повышенной степени точности.

Применение подшипников

Основное назначение этих устройств - это снижение фактора трения между подвижными элементами механизма. Могут применяться в автомобильной и сельскохозяйственной промышленности и при изготовлении различного производственного и бытового оборудования.

Преимущества и недостатки конструкции

Преимуществами изделий с такой конструкцией прежде всего считается низкий коэффициент трения и малая чувствительность к смазывающим материалам, дешевизна изготовления

Из числа минусов отмечается слабая стойкость к ударным нагрузкам и невозможность эксплуатации в агрессивных средах и при очень высоких оборотах.


Самое обсуждаемое
Презентация на тему Презентация на тему "строение и работа сердца" Скачать презентацию работа сердца
Как зарегистрировать ИП самостоятельно – пошаговая инструкция Как зарегистрировать ИП самостоятельно – пошаговая инструкция
Формирование финансовых результатов Формирование финансовых результатов


top