Где применяется алюминий. Использование алюминия: сферы применения чистого металла и его сплавов. Применение алюминия в промышленном производстве и в повседневном быту

Где применяется алюминий. Использование алюминия: сферы применения чистого металла и его сплавов. Применение алюминия в промышленном производстве и в повседневном быту

Редкий метал так часто поднимается в воздух, участвует в строительстве домов, автомобилей и морских судов, как алюминий. Казалось бы - не самый прочный, не самый стойкий, довольно мягкий... Что такого есть в алюминии, благодаря чему его называют "металлом будущего"?

У алюминия без сомнения есть несколько преимуществ, с которыми сложно поспорить:

Легкость;
- распространенность - алюминий самый распространенный металл на планете Земля;
- простота обработки;

Еще алюминий не выделяет вредных веществ при нагревании и хорошо проводит тепло. Но самое главное - стоит добавить к чистому алюминию немного, всего несколько десятых долей другого элемента, и.... вуаля! Получаете материал с диаметрально противоположными физико-химическими свойствами. Некоторые сплавы на основе алюминия настолько прочны, что при температуре до - 200 градусов по Цельсию сравнимы с титаном и сталью!

Получение и классификация алюминиевых сплавов

Процесс получения алюминиевых сплавов называется легированием. Однако легирование - это скорее не один, а несколько взаимосвязанных процессов. Его суть заключается в том, что в расплавленный алюминий вводят вспомогательные (легирующие) элементы в количестве от нескольких десятых до нескольких тысячных процента.

Доля вспомогательных веществ напрямую зависит от того результата, который необходимо получить. При этом важно учитывать, что алюминий обычно уже содержит в себе железо и кремний. Оба элемента не в лучшую сторону влияют на качество будущего сплава: они уменьшают его стойкость к коррозии, электропроводимость и пластичность.

В связи с тем, что алюминий и алюминиевые сплавы используются в стратегически важных областях, они подлежат обязательной государственной сертификации и маркировке. В России качество сплавов определяется на основе двух ГОСТ: №4784-97 и № 1583-93.

Сплавы из алюминия можно классифицировать по нескольким разным направлениям. По типу вспомогательных (легирующиех) элементов сплавы бывают:

С добавлением присадок (отдельных элементов - цинк, магний, марганец, хром, кремний, литий и т.д);

С добавлением интреметаллидов (соединений из нескольких металлов - магний+кремний, медь+магний, литий+магний, литий+медь и пр.).

В зависимости от выбранного метода дальнейшей металлообработки они делятся на:

Деформируемые сплавы алюминия (сплав не превращается в жидкость, а просто становится очень пластичным) - их удобно штамповать, подвергать ковке, прокату, экструзии, прессовке. Для достижения большей прочности некоторые из сплавов подвергают обработке при повышенных температурах (отжиг, закалка и старение), другие же обрабатывают под давлением. В результате получаются такие алюминиевые заготовки, как листы, профили, трубы, изделия более сложных форм и т.д.

Литейные сплавы алюминия (сплав проступает в производство в очень жидком состоянии, чтобы его легко можно налить в какую-нибудь форму) - такие сплавы легко резать, их них получаются литые фасонные (получаемые под давлением) и формовочные изделия.

Все сплавы на базе алюминия также можно разделить по степени прочности на:

Сверхпрочные (от 480 МПа) ;
- среднепрочные (от 300 - 480 МПа);
- малопрочные (до 300 МПа);

Отдельно классифицируются сплавы стойкие к воздействию высоких температур и коррозии.

Для того, чтобы изделия из сплавов было легко различить, каждому сплаву присваивается свой номер, состоящий из букв и цифр. Этот номер означает марку сплава алюминия. В начале наименования марки ставится буква или несколько букв, они указывают на состав сплава. Затем идет цифровой порядковый номер сплава. Буква в конце показывает, как обрабатывался сплав и в каком виде находится в данный момент.

Разберем принцип маркировки на примере сплава Д16П. Первая буква в марке "Д" означает дюралюминий, т.е сплав алюминия с медью и магнием. "16" - порядковый номер сплава. "П" - полунагартованный, то есть сплав прошел холодную обработку давлением до значения прочности вполовину меньше максимального.

Производство сплавов алюминия и их применение сильно разнятся в зависимости от вида и марки. Каждый сплав обладает своим собственным, весьма специфическим набором физико-механических свойств. Среди этих свойств есть такие, от которых зависит дальнейшая судьба сплава - то, куда он отправится с завода: на авиабазу, на стройку и в цех изготовления кухонной утвари. Эти свойства следующие: уровень прочности, коррозионная стойкость, плотность, пластичность, электро- и теплопроводность.

Основные свойства различных сплавов алюминия

Давайте рассмотрим основные сплавы на базе алюминия именно с точки зрения их приобретенных свойств.

Сплав меди и алюминия бываетнескольких видов - "чистый", в котором главными действующими элементами выступают Al и Cu, "медно-магниевый", в котором помимо меди и алюминия некоторую долю занимает магий и "медно-марганцевый" с легированием марганцем. Такие сплавы часто также называют дюралюминиям, их легко резать и сваривать "точечно".

Характерная черта дюралюминов в том, что для них берется алюминий с примесями железа и кремния. Как мы уже говорили, обычно присутствие этих элементов ухудшает качество сплава, но данный случай - исключение. Железо при повторной термической обработке сплава повышает его жаростойкость, а кремний выступает катализатором в процессе "старения" дюралюминов. В свою очередь магний и марганец в качестве легирующих элементов делают сплав намного прочнее.

Сплав алюминия и магния имеет разные показатели прочности и пластичности, в зависимости от количества магния. Чем магния меньше, тем меньше прочность изделия из такого сплава и тем выше стойкость к коррозии. Увеличение содержания магния на 1 % приводит к росту прочности до 30 000 Па. В среднем сплавы на основе магния и алюминия содержат до 6% первого. Почему не больше? Если магния в сплаве становится слишком много, изделие из него будет быстро покрываться ржавчиной, а кроме того такие изделия имеют нестабильную структуру, могут треснуть и т.д.

Термообработку сплавов магния с алюминием не проводят, так как она малоэффективна и не дает необходимого эффекта увлечения прочности.

Сплав алюминия с цинком и магнием считается наиболее прочным из всех алюминиевых сплавов, известных на сегодняшний день. Его прочность сравнима с титаном! Во время термообработки большая часть цинка растворяется, что и делает данный сплав таким прочным. Правда использовать в электрической промышленности изделия из таких сплавов невозможно, они не стойки к коррозии под напряжением. Чуть повысить коррозионную стойкость можно, если добавить в состав меди, но показатель все равно останется не удовлетворительным.

Сплав алюминия с кремнием - самый распространенный сплав в литейной промышленности. Поскольку кремний прекрасно растворяется в алюминии при нагреве, то образуемый расплавленный состав замечательным образом подходит для формовочного и фасонного литья. Готовые изделия относительно легко режутся и имеют высокую плотность.

Сплав алюминия с железом, как и сплавы алюминия с никелем практически не встречается "в живую". Железо добавляют исключительно как вспомогательный элемент для того, чтобы литейный сплав легко отлипал от стенок формы. Никель с свою очередь наиболее известен в производстве магнитов и присутствует в качестве одного из элементов в сплаве алюминий-никель-железо.

Сплав титана и алюминия, такжене встречается в чистом виде и используется только дляувеличения прочности изделий. С той же целью проводится сварка стали и сплавов алюминия.

Алюминий обладает многими ценными свойствами:

  • небольшой плотностью - около 2,7 г/см 3 ,
  • высокой теплопроводностью и высокой электропроводностью 13,8 107 Ом/м,
  • хорошей пластичностью и достаточной механической прочностью.

Алюминий образует сплавы со многими элементами . В сплавах алюминий сохраняет свои свойства. В расплавленном состоянии Al жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.

Сродство алюминия к кислороду очень большое . При его окислении выделяется большое количество тепла (~ 1670000Дж/моль). Тонкоизмельченный алюминий при: нагревании воспламеняется и сгорает на воздухе. Al соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому Al стоек против коррозии. Поверхность Al хорошо защищается от окисления этой пленкой и в расплавленном состоянии.

Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины . В состав дюралюминия, кроме Al, входят 3,4-4% меди, 0,5% Mn и 0,5% Mg, допускается не более 0,8% Fe и 0,8% Si . Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см 3 ).

Механические свойства этого сплава повышаются после термической обработки и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147-216 МПа до 353 - 412 МПа, а твердость по Бринелю с 490-588 до 880-980 МПа. При этом относительное удлинение дюралюминия почти не изменяется и остается достаточно высоким (18-24 %).

Силумины - литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами.

Применение

Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др . Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетике и электронике. Многие части искусственных спутников нашей планеты и космических кораблей изготовлены из алюминия и его сплавов.

Вследствие большого химического сродства алюминия к кислороду его применяют в черной металлургии как раскислитель, а также для получения при использовании так называемого алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др .). По общему производству металла в мире алюминий занимает второе место после железа.

– уникальный по физико-химическим параметрам материал, с небольшой плотностью, относительно малым весом, отличными антикоррозионными свойствами, высокой электро и теплопроводностью.

Хорошо поддаётся обработке давлением в холодном состоянии.

Особенно широкое распространение получили сплавы алюминия . Основная причина этого в том, что чистый алюминий обладает недостаточной механической прочностью для решения большинства технических задач. Путём введения легирующих элементов в алюминиевый сплав, прокат на выходе приобретает новые положительные свойства. Значительно увеличивается прочность, твердость, жаростойкость алюминиевого сплава, снижается электропроводность и коррозионная стойкость.

В силу своих отличных свойств, алюминий и его сплавы нашли широкое применение во многих отраслях промышленности:

  • авиастроении
  • автопроме
  • машиностроении
  • электротехнической промышленности
  • приборостроении
  • строительстве
  • химической промышленности
  • производстве товаров народного потребления

В авиастроении алюминиевые сплавы благодаря своей легкости и прочности стали главным материалом используемым в производстве. Из сплавов алюминия производят авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач, насосы и другие детали.

В электротехнике серебристо-белый металл и его сплавы широко применяют в производстве кабельно-проводниковой продукции, конденсаторов, выпрямителей переменного тока.

В приборостроении алюминий используют для изготовления фото- и киноаппаратуры, радиотелефонной аппаратуры, разнообразных контрольно- измерительных приборов.

Благодаря его высокой коррозионной стойкости и не токсичности нашел широкое применение при изготовлении оборудования для производства и хранения концентрированной азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов.
Фольга из алюминия - широко распространённый упаковочный материал. Из алюминия изготавливают тару для консервирования и хранения продуктов сельского хозяйства, а также используют для строительства зернохранилищ и других быстровозводимых сооружений, используемых на селе.
Алюминиевые сплавы применяются в военной промышленности при производстве авиации, артиллерии, танков, ракет и взрывчатых веществ.
Чистый алюминий, с минимальным содержанием сторонних примесей активно используют в ядерной энергетике, полупроводниковой электронике, радиолокации.

Алюминиевое напыление широко используют в качестве антикоррозионного покрытия для защиты металла от воздействия разнообразных химических веществ и атмосферной коррозии.

Высокую отражающую способность алюминия используют при производстве нагревательных, осветительных рефлекторов и зеркал

Алюминий применяют в металлургии в качестве восстановителя при получении таких металлов как хром, кальций, марганец. Алюминий используют для раскисления стали и сварки стальных элементов.

В гражданском строительстве сплавы алюминия используют для создания каркасов зданий, ферм, оконных рам, лестниц и др. За рубежом, а в частности в Канаде, доля алюминия в этой отрасли составляет ≈ 30 % от общего потребления, в Соединённых Штатах - более 20 %.

Резюмируя вышесказанное можно с уверенностью сказать, что алюминий и его сплавы прочно удерживают лидирующее место среди цветных металлов по масштабам использования их в производстве и промышленности.

Алюминий имеет колоссальное значение в промышленности вследствие повышенной пластичности, высокого уровня тепло- и электропроводности, низкой коррозии, поскольку образующаяся на поверхности пленка Al2O3 выступает защитником от окисления. Из алюминия получается отличный тонкий прокат, фольга, любой формы профиль при помощи прессования и других видов обработки давления. Из него создают разного типа провода, применяемые в электроаппаратуре.
Алюминий, как и железо очень редко применяется в чистом виде. Чтобы придать им заданные полезные качества на производстве добавляют небольшие количества (не больше 1 %) иных элементов, называемых легирующими. Таким образом получают сплавы железа, алюминия и других металлов.

Физические параметры алюминиевых сплавов

Алюминиевые сплавы имеют плотность, которая незначительно отличается от плотности чистого металла (2.7 г/см3). Она колеблется от 2.65 г/см3 для сплава АМг6 до 2.85 г/см3 для сплава В95.
Процедура легирования почти не оказывает влияния на величину модуля упругости и модуля сдвига. К примеру, модуль упругости упрочненного дюралюминия Д16Т почти такой же, как модуль упругости чистого металла А5 (Е=7100 кгс/мм2). Тем не менее, за счет того, что максимум текучести сплавов на несколько единиц превышает максимум текучести чистого алюминия, сплавы алюминия уже можно использовать в качестве конструкционного материала с различным уровнем нагрузок (все зависит от марки сплава и его состояния).
Вследствие низкого показателя плотности удельное значение максимума прочности, максимума текучести и модуля упругости (соответствующие параметры, разделенные на величину плотности) для прочных алюминиевых сплавов можно сравнить с такими же показателями удельных величин для стали и титановых сплавов. Это дает возможность алюминиевым сплавам с высокой прочностью вы ступать конкурентами для стали и титана, однако исключительно до температур не выше 200 С.
Большая часть алюминиевых сплавов отличается худшей электро- и теплопроводностью, коррозионной стойкостью и свариваемостью в сравнении с чистым алюминием.
Известно, что сплавы с более высокой степенью легирования характеризуются существенно меньшей электро- и теплопроводностью. Эти показатели находятся в непосредственной зависимости от состояния сплава.
Самые лучшие коррозионные свойства алюминиевых сплавов наблюдаются у сплавов АМц, АМг, АД31, а худшие - у высоко-прочных сплавов Д16, В95, АК. Помимо этого, коррозионные показатели термоупрочняемых сплавов в значительной степени зависят от режима закалки и старения. К примеру, сплав Д16 чаще всего используется в естественно-состаренном состоянии. Тем не менее, при температуре более 80оС его коррозионные показатели существенно снижаются и для использования в условиях более высоких температур зачастую применяют искусственное старение.
Хорошо поддаются всем видам сварки сплавы АМц и Амг. В процессе сварки нагартованного проката в области сварочного шва осуществляется отжиг, по этой причине прочность шва приравнивается к прочности основного материала в отожженном состоянии.

Виды алюминиевых сплавов

Сегодня очень развито производство алюминиевых сплавов. Существует два типа алюминиевых сплавов:

  • деформируемые, из которых создают листы, трубы, профиль, паковки, штамповки
  • литейные, из которых осуществляется фасонное литье.

Широкое применение алюминиевых сплавов обусловлено их свойствами. Такие сплавы очень популярны в авиации, автомобилестроении, судостроении и прочих сферах народного хозяйства.
Неупрочняемые сплавы Al - Mn (АМц) и Al - Mg (АМг) являются коррозионностойкими материалами, из которых изготавливают бензобаки, маслобаки, корпуса судов.
Упрочняемые сплавы Al -Mg - Si (АВ, АД31, АД33) применяются для создания лопастей и деталей кабин вертолетов, барабанов колес гидросамолетов.
Сплав алюминия и меди - дюралюминий или дюраль. Сплав с кремнием называют силумином. Сплав с марганцем - АМц имеет повышенную коррозионную стойкость. Такие элементы, как Ni, Ti, Cr, Fe в сплаве способствуют повышению жаропрочности сплавов, затормаживанию процесса диффузии, а присутствие лития и бериллия повышают модуль упругости.
Жаропрочные алюминиевые сплавы системы Al - Cu - Mn (Д20, Д21) и Al - Cu - Mg - Fe - Ni (АК - 4 - 1) используют для создания поршней, головок цилиндров, дисков, лопаток компрессоров и прочих деталей, которым предстоит функционировать при температурах до 300°С. Жаропрочности можно достичь легированием Ni, Fe, Ti, (Д20, Д21, АК - 4 - 1).
Литейные алюминиевые сплавы используют для создания литых заготовок. Это сплавы Al - Si (силумины), Al - Cu (дюрали), Al - Mg (Амг). В числе силуминов стоит отметить сплавы Al - Si (AЛ - 2), Al - Si - Mg (АЛ - 4, АЛ - 9, АЛ - 34), упрочняемые при помощи термообработки. Силумины отлично поддаются литью, а также обработке резанием, свариванием, также их можно анодировать и даже пропитывать лаками.
Высокопрочные и жаропрочные литейные сплавы систем Аl - Cu - Mn (АЛ - 19), Al - Cu - Mn - Ni (АЛ - 33), Al - Si - Cu - Mg (АЛ - 3, АЛ - 5). Прошедшие процесс легирования хромом, никелем, хлором или цинком выдерживают температуру до 300°С. Из них создают поршни, головки блока, цилиндров.
Спеченный алюминиевый порошок (САП) получают методом прессования (700 МПа) при температуре от 500 до 600°С алюминиевой пудры. САП отличается повышенной прочностью и уровнем жаропрочности до 500°С.

Марки алюминиевых сплавов

Определенные характеристики алюминиевых сплавов соответствуют конкретным маркам этих сплавов. Признанные международные и национальные нормативы (раньше были немецкие DIN, а сегодня европейские EN, американские ASTM и международные ISO) также как и российские ГОСТы рассматривают по отдельности чистый алюминий и его сплавы. Чистый алюминий согласно этим документам делят на марки (grades), а не на сплавы (alloys).
Все марки алюминия делят на:

  • алюминий высокой чистоты (99,95 %)
  • технический алюминий, имеющий около 1 % примесей или добавок.

Стандарт EN 573-3 определяет разные по чистоте версии алюминия, к примеру, «алюминий EN AW 1050A», и алюминиевые сплавы, к примеру, «сплав EN AW 6060». В тоже время, достаточно часто алюминий называют сплавом, к примеру, «алюминиевый сплав 1050А».
В российских стандартах, к примеру, в документе ГОСТ 4784-97 «Алюминий и сплавы алюминиевые деформируемые» и иных документах по алюминию и алюминиевым сплавам, вместо термина «обозначения» используется близкие термин «марка», только в английском эквиваленте «grade». По существующим стандартам нужно использовать фразы типа «алюминий марки АД0» и «алюминиевый сплав марки АД31».
Однако зачастую термин «марка» используют лишь для алюминия, а алюминиевые сплавы называют просто «алюминиевыми сплавами» без всяких марок, к примеру, «алюминиевый сплав АД31».
Иногда люди путают термин «марка» с термином «маркировка». ГОСТ 2.314-68 определяет термин маркировка, как совокупность знаков, характеризующих продукт, к примеру, обозначение, шифр, номер партии (серии), дата изготовления, товарный знак фирмы. При этом марка - это монтажные или транспортные обозначения. Следовательно, обозначение или марка сплава - это всего лишь небольшая часть маркировки, но не сама маркировка.
Марку алюминия или сплава наносят на один из торцов слитка, чушки. При помощи несмываемой краски наносят цветные полосы, которые являются маркировкой. К примеру, согласно ГОСТ 11069-2001 алюминий марки А995 промаркирован четырьмя зелеными вертикальными полосами.
Согласно документу ГОСТ 11069-2001 марки алюминия обозначаются цифрам после запятой в процентном содержании алюминия: А999, А995, А99, А85, А8, А7, А6, А5 и А0. При этом самый чистый алюминий - А999, в нем содержится 99,999 % алюминия. Он используется для лабораторных опытов. В промышленной отрасли используют алюминий высокой чистоты - от 99,95 до 99,995 % и технической чистоты - от 99,0 до 99,85 %.

Состояния (обработки) полуфабрикатов из деформируемых алюминиевых сплавов

Маркировка

Состояние, назначение

После изготовления, без дополнительной термической обработки. Степень нагартовки и механические свойства не контролируются

Горячекатаное

Горячепрессованное

Отожженное (мягкое). Наиболее высокая пластичность и стабильность размеров

Нагартованное (холоднодеформированное)

Усиленно нагартованное (прокаткой листов около 20 %, для максимального упрочнения)

Нагартованное на три четверти (3/4), повышение прочности

Полунагартованное (1/2), повышение прочности

Нагартованное на одну четверть (1/4), повышение прочности

Закаленное* (нестабильное, обычно указывается длительность естественного старения после закалки), повышение прочности

Закаленное + естественно состаренное. Получение достаточно высокой прочности, повышенной пластичности, трещиностойкостии, сопротивления усталости

Закаленное + искусственно состаренное на максимальную прочность

Закаленное + искусственно состаренное. Улучшение характеристик сопротивления коррозии, трещиностойкости, пластичности при некотором снижении прочности. В русской маркировке возрастание первой цифры при букве указывает на увеличение степени перестаривания и разупрочнения

Т31, Т36,
Т37, Т39

Закаленное + естественно состаренное + нагартованное. На степень деформации нагартовки указывает вторая цифра. Повышение прочности при снижении характеристик пластичности, трещиностойкости

Т81, Т83,
Т86, Т87

Закаленное + нагартованное + искусственно состаренное. На степень деформации (нагартовки) указывает вторая цифра. Повышение прочности

Закаленное + искусственно состаренное + нагартованное. Повышение прочности особенно при совмещении с процессом формообразования детали

Введение

1. Алюминий

2. Сплавы алюминия

Заключение

Введение

Алюминий - химический элемент третьей группы периодической системы элементов Д.И. Менделеева. Его порядковый номер 13, атомная масса 26,98.

Алюминий - металл, сферы потребления которого постоянно расширяются. В ряде областей промышленности он успешно вытесняет традиционно применяемые металлы и сплавы. Бурное развитие потребления алюминия обусловлено замечательными его свойствами, среди которых в первую очередь следует назвать высокую прочность в сочетании с малой плотностью, удовлетворительную коррозионную стойкость, хорошую способность к формоизменению путем литья, давления и резания; возможность соединения алюминиевых деталей в различных конструкциях с помощью сварки, пайки, склеивания и других способов; способность к нанесению защитных и декоративных покрытий.

Все это в сочетании с большими запасами алюминия в земной коре делает перспективы развития производства и потребления алюминия весьма широким.

В наши дни трудно найти отрасль промышленности, где бы ни использовался алюминий или его сплавы - от микроэлектроники до тяжёлой металлургии. Это обуславливается хорошими механическими качествами, лёгкостью, малой температурой плавления, что облегчает обработку, высоким внешними качествами, особенно после специальной обработки. Учитывая перечисленные и многие другие физические и химические свойства алюминия, его неисчерпаемое количество в земной коре, можно сказать, что алюминий - один из самых перспективных материалов будущего.

алюминий сплав химический элемент

1. Алюминий

Алюминий сравнительно молодой металл. Название его происходит от латинского слова ALUMEN - так 500 лет до н.э. называли алюминиевые квасцы, которым использовались для протравливания при крашении тканей и дубления кож.

Алюминий как элемент был открыт в 1825г., когда были получены первые небольшие комочки этого металла. Начало его промышленного освоения относится к концу 19-го столетия - после открытия технологии его получения путем электролиза глинозема, растворенного в расплавленном криолите. Этот принцип лежит и в основе современного промышленного извлечения алюминия из глинозема во всех странах мира.

В России над технологией получения алюминия во второй половине прошлого века работал известный ученый-химик Н.Н. Бекетов, трудами которого воспользовались немцы, построившие первый алюминиевый завод в Гмелингине. Первый алюминиевый завод в нашей стране был пущен в эксплуатацию в 1932г. На базе Волховской гидростанции. Строительство Днепрогэса позволило запустить в 1933г. второй алюминиевый завод. Развитие электроэнергетического комплекса в 60-70 гг. позволило построить большое количество мощных алюминиевых заводов и занять ведущее место на мировом рынке алюминия.

Алюминий представляет собой серебристо-белый пластичный металл. В воздушной среде он быстро покрывается окисной пленкой, которая защищает его от коррозии. Алюминий химически стоек против азотной и органических кислот, но разрушается щелочами, а также соляной и серной кислотами. Важнейшее свойство алюминия - небольшая плотность, он в три раза легче железа. Механические свойства алюминия невысоки: сопротивление на разрыв - 5-9 кгс/мм², относительное удлинение - 25-45%. Высокая пластичность (достигается отжигом при температурах 350-410°С) этого металла позволяет прокатывать его в очень тонкие листы, например, фольга может иметь толщину до 0,005мм. Алюминий хорошо сваривается, однако трудно обрабатывается резанием. Для повышения прочности в алюминий вводят кремний, марганец, медь и другие компоненты. Значительные природные запасы алюминия, его небольшая плотность, высокие антикоррозийные свойства, хорошая электропроводность способствовали широкому распространению этого металла в различных отраслях техники. Алюминий и его сплавы применяются в самолето- и машиностроении, при строительстве зданий и линий электропередачи, во многих отраслях промышленности. Из него изготавливают различные емкости и арматуру для химической промышленности, в пищевой промышленности применяется упаковочная фольга из алюминия и его сплавов (для обертки кондитерских и молочных изделий). Широкое признание получила алюминиевая посуда. Алюминий хорошо подвергается различным тонким покрытиям и окраске, поэтому его используют и как декоративный материал.

2. Сплавы алюминия

Алюминий всех марок содержит более 99% чистого алюминия. В зависимости от химического состава он подразделяется на алюминий особой, высокой и технической частоты, обозначается буквой А и цифрой, показывающей десятые и сотые доли процента после 99%, например, А85 - содержит 99,85% алюминия.

Дюралюминий - сплав алюминия с медью (2,2-5,2%), магнием (2-2,7%) и марганцем (0,2-1,0%). Его подвергают закалке в воде после нагрева до температуры около 500°С и упрочняющему старению. По своим механическим свойствам он приближается к среднеуглеродистым сталям. Применяется, главным образом, в виде различного проката - листы, уголок, трубы и т.д. как конструкционный материал он используется для транспортного и авиационного машиностроения.

Силумин - сплав алюминия и кремния, обладает хорошими литейными свойствами, мягкий, применяется для изготовления неответственных деталей методом литья и давления. Кроме алюминия и кремния (10-13%) в этот сплав входят: железо (0,2-0,7%), марганец (0,05-0,5%), кальций (0,07-0,2%), титан (0,05-0,2%), медь (0,03%) и цинк (0,08%). Могут использоваться сплавы алюминия с цинком, магнием.

Большинство металлических элементов сплавляются с алюминием, но только некоторые из них играют роль основных легирующих компонентов в промышленных алюминиевых сплавах. Тем не менее, значительное число элементов используют в качестве добавок для улучшения свойств сплавов. Наиболее широко применяются:

Бериллий добавляется для уменьшения окисления при повышенных температурах. Небольшие добавки бериллия (0,01 - 0,05%) применяют в алюминиевых литейных сплавах для улучшения текучести в производстве деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Бор вводят для повышения электропроводимости и как рафинирующую добавку. Бор вводится в алюминиевые сплавы, используемые в атомной энергетике (кроме деталей реакторов), т.к. он поглощает нейтроны, препятствуя распространению радиации. Бор вводится в среднем в количестве 0,095 - 0,1%.

Висмут. Металлы с низкой температурой плавления, такие как висмут, свинец, олово, кадмий вводят в алюминиевые сплавы для улучшения обрабатываемости резанием. Эти элементы образуют мягкие легкоплавкие фазы, которые способствуют ломкости стружки и смазыванию резца. Галлий добавляется в количестве 0,01 - 0,1% в сплавы, из которых далее изготавливаются расходуемые аноды.

Железо. В малых количествах (0,04%) вводится при производстве проводов для увеличения прочности и улучшает характеристики ползучести. Так же железо уменьшает прилипание к стенкам форм при литье в кокиль.

Индий. Добавка 0,05 - 0,2% упрочняют сплавы алюминия при старении, особенно при низком содержании меди. Индиевые добавки используются в алюминиево-кадмиевых подшипниковых сплавах.

Примерно 0,3% кадмия вводят для повышения прочности и улучшения коррозионных свойств сплавов. Кальций придаёт пластичность. При содержании кальция 5% сплав обладает эффектом сверхпластичности.

Кремний является наиболее используемой добавкой в литейных сплавах. В количестве 0,5 - 4% уменьшает склонность к трещинообразованию. Сочетание кремния с магнием делают возможным термоуплотнение сплава.

Магний. Добавка магния значительно повышает прочность без снижения пластичности, повышает свариваемость и увеличивает коррозионную стойкость сплава.

Медь упрочняет сплавы, максимальное упрочнение достигается при содержании меди 4 - 6%. Сплавы с медью используются в производстве поршней двигателей внутреннего сгорания, высококачественных литых деталей летательных аппаратов. Олово улучшает обработку резанием.

Титан. Основная задача титана в сплавах - измельчение зерна в отливках и слитках, что очень повышает прочность и равномерность свойств во всём объёме.

Хотя алюминий считается одним из наименее благородных промышленных металлов, он достаточно устойчив во многих окислительных средах. Причиной такого поведения является наличие непрерывной окисной плёнки на поверхности алюминия, которая немедленно образуется вновь на зачищенных участках при воздействии кислорода, воды и других окислителей.

В большинстве случаев плавку ведут на воздухе. Если взаимодействие с воздухом ограничивается образованием на поверхности нерастворимых в расплаве соединений и возникающая пленка этих соединений существенно замедляет дальнейшее взаимодействие, то обычно не принимают каких-либо мер для подавления такого взаимодействия. Плавку в этом случае ведут при прямом контакте расплава с атмосферой. Так поступают при приготовлении большинства алюминиевых, цинковых, оловянно - свинцовых сплавов.

Пространство, в котором протекает процесс плавки сплавов, ограничивается огнеупорной футеровкой, способной выдерживать температуры 1500 - 1800С. Во всех процессах плавки участвует газовая фаза, которая формируется в процессе сгорания топлива, взаимодействуя с окружающей средой и футеровкой плавильного агрегата.

3. Применение алюминия и его сплавов

В настоящее время алюминий и его сплавы используют практически во всех областях современной техники. Важнейшие потребители алюминия и его сплавов - авиационная и автомобильная отрасли промышленности, железнодорожный и водный транспорт, машиностроение, электротехническая промышленность и приборостроение, промышленное и гражданское строительство, химическая промышленность, производство предметов народного потребления.

Большинство алюминиевых сплавов имеют высокую коррозионную стойкость в естественной атмосфере, морской воде, растворах многих солей и химикатов и в большинстве пищевых продуктов. Конструкции из алюминиевых сплавов часто используют в морской воде. Морские бакены, спасательные шлюпки, суда, баржи строятся из сплавов алюминия с 1930 г. В настоящее время длина корпусов кораблей из сплавов алюминия достигает 61 м. Существует опыт алюминиевых подземных трубопроводов, сплавы алюминия обладают высокой стойкостью к почвенной коррозии. В 1951 году на Аляске был построен трубопровод длиной 2,9 км. После 30 лет работы не было обнаружено ни одной течи или серьёзного повреждения из-за коррозии.

Алюминий в большом объёме используется в строительстве в виде облицовочных панелей, дверей, оконных рам, электрических кабелей. Алюминиевые сплавы не подвержены сильной коррозии в течение длительного времени при контакте с бетоном, строительным раствором, штукатуркой, особенно если конструкции не подвергаются частому намоканию. При частом намокании, если поверхность алюминиевых изделий не была дополнительно обработана, он может темнеть, вплоть до почернения в промышленных городах с большим содержанием окислителей в воздухе. Для избежания этого выпускаются специальные сплавы для получения блестящих поверхностей путём блестящего анодирования - нанесения на поверхность металла оксидной плёнки. При этом поверхности можно придавать множество цветов и оттенков. Например, сплавы алюминия с кремнием позволяют получить гамму оттенков, от серого до чёрного. Золотой цвет имеют сплавы алюминия с хромом.

Учитывая высокую стойкость алюминия к окислению, порошок используются в качестве пигмента в покрытиях для окраски оборудования, крыш, бумаги в полиграфии, блестящих поверхностей панелей автомобилей. Также слоем алюминия покрывают стальные и чугунные изделия во избежание их коррозии.

По масштабам применения алюминий и его сплавы занимают второе место после железа (Fe) и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло - и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами - ковкой, штамповкой, прокаткой и др. Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.

Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия используют для получения легких сплавов - дуралюмина (94% - алюминий, 4% медь (Cu), по 0,5% магний (Mg), марганец (Mn), железо (Fe) и кремний (Si)), силумина (85-90% - алюминий, 10-14% кремний (Si), 0,1% натрий (Na)) и др. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе меди (Cu), магния (Mg), железа (Fe), >никеля (Ni) и др.

Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония (Zr) - широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ. При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу, и она приобретает неприятный "металлический" привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.

Использование алюминия и его сплавов во всех видах транспорта и в первую очередь - воздушного позволило решить задачу уменьшения собственной ("мертвой") массы транспортных средств и резко увеличить эффективность их применения. Из алюминия и его сплавов изготовляют авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач. Алюминием и его сплавами отделывают железнодорожные вагоны, изготовляют корпуса и дымовые трубы судов, спасательные лодки, радарные мачты, трапы. Широко применяют алюминий и его сплавы в электротехнической промышленности для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении алюминий и его сплавы используют в производстве кино - и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов. Благодаря высокой коррозионной стойкости и нетоксичности алюминий широко применяют при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов. Алюминиевая фольга, будучи прочнее и дешевле оловянной, полностью вытеснила ее как упаковочный материал для пищевых продуктов. Все более широко используется алюминий при изготовлении тары для консервирования и храпения продуктов сельского хозяйства, для строительства зернохранилищ и других быстровозводимых сооружений. Являясь одним из важнейших стратегических металлов, алюминий, как и его сплавы, широко используется в строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, а также для других целей в военной технике.

Алюминий высокой чистоты находит широкое применение в новых областях техники - ядерной энергетике, полупроводниковой электронике, радиолокации, а также для защиты металлических поверхностей от действия различных химических веществ и атмосферной коррозии. Высокая отражающая способность такого алюминия используется для изготовления из пего отражающих поверхностей нагревательных и осветительных рефлекторов и зеркал. В металлургической промышленности алюминий используют в качестве восстановителя при получении ряда металлов (например, хрома, кальция, марганца) алюмотермическими способами, для раскисления стали, сварки стальных деталей.

Широко применяют алюминий и его сплавы в промышленном и гражданском строительстве для изготовления каркасов зданий, ферм, оконных рам, лестниц и др. В Канаде, например, расход алюминия для этих целей составляет около 30 % от общего потребления, в США - более 20 %. По масштабам производства и значению в хозяйстве алюминий прочно занял первое место среди других цветных металлов.

Заключение

Производство алюминия будет расти в странах, где имеется доступ к дешёвым источникам электроэнергии, бокситов и развитой инфраструктуре. Россия - одна из наиболее привлекательных стран для энергоёмких отраслей промышленности (по данным CRU), а также с точки зрения затрат на производство. Предполагается, что реализация российских проектов позволит увеличить производство алюминия к 2015 г. до 5,39-5,743 млн. тонн, то есть в 1,3-1,4 раза.

Уже сейчас трудно найти отрасль промышленности, где бы не использовался алюминий или его сплавы - от микроэлектроники до тяжёлой металлургии. Это обуславливается хорошими механическими качествами, лёгкостью, малой температурой плавления, что облегчает обработку, высоким внешними качествами, особенно после специальной обработки. Учитывая перечисленные и многие другие физические и химические свойства алюминия, его неисчерпаемое количество в земной коре, можно сказать, что алюминий - один из самых перспективных материалов будущего.

Изучив сферы применения алюминия и его сплавов, можно сделать следующие выводы:

Совокупность свойств (малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло - и электропроводность, технологичность, высокую коррозионную стойкость) алюминия и его большие природные запасы позволяют отнести алюминий к числу важнейших технических материалов.

Уже сейчас трудно найти отрасль промышленности, где бы не использовался алюминий или его сплавы - от микроэлектроники до тяжёлой металлургии.

Список использованной литературы

1.Багров, Н.М. Основы отраслевых технологий [Текст] учебное пособие / Н.М. Багров, - СПб.: Изд-во СПбГУЭФ, 2006, - 251с.

2.Горынин, И.В. Алюминиевые сплавы. Применение алюминиевых сплавов [Текст] справочное руководство / И.В. Горынин, М.: 1978,-с.145.

.3. Ключников, Н.Г. Алюминий [Текст] учебное пособие / Н.Г. Ключников, А.Ф. Колодцев, М.: 2001,-с.67.

4.4.


Самое обсуждаемое
Презентация на тему Презентация на тему "строение и работа сердца" Скачать презентацию работа сердца
Как зарегистрировать ИП самостоятельно – пошаговая инструкция Как зарегистрировать ИП самостоятельно – пошаговая инструкция
Формирование финансовых результатов Формирование финансовых результатов


top